Что такое полупроводниковый диод, виды диодов и график вольт-амперной характеристики

Обозначение и расшифровка диодов

Обозначение выпрямительного диода на схеме согласно “ГОСТ 2.730-73 ЕСКД. Обозначения условные графические в схемах. Приборы полупроводниковые”.
В приложении данного ГОСТа указаны размеры в модульной сетке. Выглядит это следующим образом:

Существуют различные варианты обозначения диодов.

Согласно ОСТ 11366.919-81 следующее буквенно-цифровое обозначение:

  • 1) первая буква или цифра указывает на материал:
    • 1 (Г) – германий Ge
    • 2 (К) – кремний Si
    • 3 (А) – галлий Ga
    • 4 (И) – индий In
  • 2) Вторая буква – это подкласс полупроводникового прибора. Для нашего случая – это буква Д.
  • 3) Третья цифра – функционал элемента в зависимости от класса (диоды, варикапы, стабилитроны и др.).

Например, для выпрямительных диодов (Д):

101…199 – диоды малой мощности с постоянным или средним значением прямого тока менее 0,3А.

201…299 – диоды средней мощности с постоянным или средним значением прямого тока от 0,3 до 10А.

Также существуют диоды большой мощности с током более 10А. Отвод тепла у диодов малой мощности осуществляется через корпус, у диодов средней и большой мощности через теплоотводящие радиаторы.

До 1982 года была другая классификация:

  • первая Д – характеризовала весь класс диодов
  • далее шел цифровой код:
    • от 1 до 100 — для точечных германиевых диодов
    • от 101 до 200 — для точечных кремниевых диодов
    • от 201 до 300 — для плоскостных кремниевых диодов
    • от 301 до 400 — для плоскостных германиевых диодов
    • от 401 до 500 — для смесительных СВЧ детекторов
    • от 501 до 600 — для умножительных диодов
    • от 601 до 700 — для видеодетекторов
    • от 701 до 749 — для параметрических германиевых диодов
    • от 750 до 800 — для параметрических кремниевых диодов
    • от 801 до 900 — для стабилитронов
    • от 901 до 950 — для варикапов
    • от 951 до 1000 — для туннельных диодов
    • от 1001 до 1100 — для выпрямительных столбов
  • третья цифра – разновидность групп однотипных приборов

Система JEDEC (США)

  • первая цифра – число p-n переходов (1 – диод; 2 – транзистор; 3 – тиристор)
  • далее N (типа номер) и серийный номер
  • после может идти пару цифр про номиналы и отдельные характеристики диода

Система Pro Electron (Европа)

По данной системе приборы делятся на промышленные и бытовые. Бытовые кодируются двумя буквами и тремя цифрами от 100 до 999. У промышленных приборов будет идти три буквы и две цифры от 10 до 99. Для диодов:

  • 1) первая буква:
    • A – германий Ge
    • B – кремний Si
    • C – галлий Ga
    • R – другие полупроводники
  • 2) Вторая буква – это буква A, указывающая на маломощные импульсные и универсальные диоды.
  • 3) Третья буква отвечает за принадлежность элемента к сфере специального применения (промышленность, военная). “Z”, “Y”, “X” или “W”.
  • 4) Четвертая – это 2х, 3х или 4х-значный серийный номер прибора.
  • 5) Дополнительный код – в нем для выпрямительных диодов указывается максимальная амплитуда обратного напряжения.

Система JIS (Япония)

Применяется в странах Азии и тихоокеанского региона.

  • первая цифра – число переходов (0 – фототранзистор, фотодиод; 1 – диод; 2 – транзистор; 3 – тиристор)
  • затем буква S (semiconductors) – полупроводниковые
  • затем буква, отвечающая за тип прибора:
    • A – ВЧ транзисторы p-n-p
    • B – НЧ транзисторы p-n-p
    • С – ВЧ транзисторы n-p-n
    • D – НЧ транзисторы n-p-n
    • E – диоды
    • F – тиристоры
    • G – диоды Ганна
    • H – однопереходные транзисторы
    • J – полевые транзисторы с p-каналом
    • K – полевые транзисторы с n-каналом
    • M – симметричные тиристоры
    • Q – светоизлучающие диоды
    • R – выпрямительные диоды
    • S – малосигнальные диоды
    • T – лавинные диоды
    • V – варикапы, p-i-n диоды, диоды с накоплением заряда
    • Z – стабилитроны, стабисторы, ограничители

В нашем случае будет буква R.

Рег. номер прибора
Модификация прибора
Далее может идти индекс, описывающий специальные свойства

Существуют и специальные обозначения от фирм-изготовителей, которые отличаются от приведенных выше.

Диод в цепи постоянного тока

Как мы уже говорили, диод пропускает электрический ток только в одном направлении. Для того, чтобы это показать, давайте соберем простую схему.


прямое включение диода

Так как наша лампа накаливания на 12 Вольт, следовательно, на блоке питания тоже выставляем значение в 12 В и собираем всю электрическую цепь по схеме выше. В результате, лампочка у нас прекрасно горит. Это говорит о том, что через диод проходит электрический ток. В этом случае говорят, что диод включен в прямом направлении.


диод в прямом включении

Давайте теперь поменяем выводы диода. В результате, схема примет такой вид.


обратное включение диода

Как вы видите, лампочка не горит, так как диод не пропускает электрический ток, то есть блокирует его прохождение, хотя источник питания и выдает свои честные 12 Вольт.


обратное включение диода

Какой вывод можно из этого сделать? Диод проводит постоянный ток только в одном направлении.

Диоды большой мощности

Рис. 3. Выпрямительные отечественные диоды большой мощности.

В таблице приведены справочные данные по отечественными выпрямительным диодам большой мощности.

Тип прибораПредельные значения параметров при Т=25СЗначения параметров при Т=25СТк.мах (Тп.) С
Uобр.макс. (Uобр.и.мак.) BIпр.макс. (Iпр.и.мак.) AIпрг. Afраб. (fмакс.) kГцUпр. Bпри Iпр. AIобр. mA
123456789
2Д2990А600 (600)202001,42011125
2Д2990Б400 (400)202001,42011125
2Д2990В200 (200)202001,42011125
КД2994А100 (100)202001,4200,2125
КД2995А50 (50)202001,1200,01150
КД2995Б70 (70)202001,1200,01150
КД2995В100 (100)202001,1200,01150
КД2995Г50 (50)202001,1200,01150
КД2995Е100 (100)202001,1200,01150
2Д2997А200 (250)30 (100)1001,03025125
2Д2997Б100 (200)30 (100)1001,03025125
2Д2997В50 (100)30 (100)1001,03025125
КД2997А200 (250)30 (100)1001,03025125
КД2997Б100 (200)30 (100)1001,03025125
КД2997В50 (100)30 (100)1001,03025125
2Д2998А15 (15)30 (100)6002000,630150125
2Д2998Б25 (25)30 (100)6002000,6830150125
2Д2998В25 (25)30 (100)6002000,6830150125
2Д2999А200 (250)20 (100)1001,02025125
2Д2999Б100 (200)20 (100)1001,02025125
2Д2999В50 (100)20 (100)1001,02025125
КД2999А200 (250)20 (100)1001,02025125
КД2999Б100 (200)20 (100)1001,02025125
КД2999В50 (100)20 (100)1001,02025125

Справочник по диодам отечественного производства.

Как определить анод и катод диода

1) на некоторых диодах катод обозначают полоской, отличающейся от цвета корпуса

2) можно проверить диод с помощью мультиметра и узнать, где у него катод, а где анод. Заодно проверить его работоспособность. Этот способ железный ;-). Как проверить диод с помощью мультиметра можно узнать в этой статье.

Где находится анод, а где катод очень легко запомнить, если вспомнить воронку для наливания жидкостей в узкие горлышки бутылок. Воронка очень похожа на схему диода. Наливаем в воронку, и жидкость у нас очень хорошо бежит, а если ее перевернуть, то попробуй налей-ка через узкое горлышко воронки ;-).

Обратное включение диода

Теперь будет рассмотрен другой способ включения, во время которого изменяется полярность внешнего источника, от которого происходит передача напряжения:

  1. Главное отличие от прямого включения заключается в том, что создаваемое электрическое поле будет обладать направлением, полностью совпадающим с направлением внутреннего диффузионного поля. Соответственно, запирающий слой будет уже не сужаться, а, наоборот, расширяться.
  2. Поле, находящееся в p-n-переходе, будет оказывать ускоряющий эффект на целый ряд неосновных носителей заряда, по этой причине, показатели дрейфового тока останутся без изменений. Он будет определять параметры результирующего тока, который проходит через p-n-переход.
  3. По мере роста обратного напряжения, электрический ток, протекающий через переход, будет стремиться достичь максимальных показателей. Он имеет специальное название – ток насыщения.
  4. В соответствии с экспоненциальным законом, с постепенным увеличением температуры будут увеличиваться и показатели тока насыщения.

Параметры импульсных диодов

Для диодов импульсного типа свойственно наличие:

В число основных параметров импульсного диода входят следующие:

  1. емкость;
  2. максимальное импульсное прямое напряжение;
  3. максимальный импульсный прямой ток;
  4. время восстановления обратного сопротивления.

Вольт-амперная характеристика p-n перехода, представляющая зависимость плотности полного тока на границе перехода от напряжения смещения:

, (3.7)

где

. (3.8)

На практике для реальных полупроводниковых приборов используют вольт-амперную характеристику для полного тока через p-n переход:

(3.9)

где , ; S -площадь перехода.

При быстром изменении напряжения (тока) на диоде ток (напряжение) через диод в соответствии со статической характеристикой (3.9) устанавливается не сразу, а через некоторое время, обусловленное инерционностью диода. Инерционность диода связана с конечной скоростью установления концентрации неравновесных носителей при внешнем смещении р-n перехода. Поэтому для импульсных диодов наряду с параметрами, определенными из статической вольт-амперной характеристики, вводят еще ряд параметров, характеризующих инерционность диода.
Дополнительной характеристикой является длительность установления прямого напряжения.

Импульс обратного тока

Задержка запирания импульсного диода интересна эффектом, который выражается в кратковременном увеличении обратного тока. Это обусловлено особыми физико-химическими процессами, протекающими в полупроводниковой структуре импульсного диода. В первые доли секунды при прохождении импульса через p-n-переход происходит инжекция неосновных носителей заряда, которые скапливаются в базе диода. И только после того, как данное скопление рекомбинирует и рассосется, диод запирается.
Движение неосновных носителей провоцирует возникновение того самого обратного тока, резкое возрастание которого фиксируется при смене полярности входного сигнала. Таким образом, в этот момент возникает классический с точки зрения физики . Его длительность крайне невелика – единицы наносекунд, что и используется в генераторных схемах. Небольшая продолжительность определяется чрезвычайно малой емкостью p-n-перехода, которая редко превышает единицы пикофарад.
Как известно, в выпрямительных диодах, для обеспечения их функциональности используются плоскостные p-n-переходы. Их особенность состоит в довольно большой емкости. В импульсных же диодах она должна быть как раз небольшой. Поэтому при производстве данных радиодеталей от плоскостной модели p-n-перехода отказались. Эти элементы изготавливают с помощью микросплавных и планарных методов. Последние применяются при производстве интегральных микросхем для цифрового оборудования.

1. tвосст- время восстановления обратного сопротивления при переключении из прямого направления в обратное в момент t1(рис.4.7). В начальный момент после переключения Ua обратный ток намного больше установившегося (3.8) из-за высокой неравновесной концентрации неосновных носителей, оставшихся от прямого смещения. В течение tвосст концентрация неосновных носителей уменьшается, а обратный ток достигает заданного значения (несколько большего, чем из (3.8), как показано на рис.4.7).

Рис. 4.7

Рис. 4.8

2. tуст -время установления прямого сопротивления диода при переключении из обратного направления в прямое в момент t1 (рис.4.8). В начальный момент включения прямого тока величина прямого напряжения (сопротивления) на p-n переходе больше, чем это следует из (3.7), так как концентрация инжектированных (неосновных) носителей еще мала. В течение tуст концентрация инжектированных носителей достигает величины, близкой к установившейся, а прямое напряжение (сопротивление) уменьшается до 1,1Unp , соответствующего статической вольт-амперной характеристике (3.7). Этот процесс еще характеризуют максимальным импульсным прямым напряжением Unp.имп.max.

3. Сд -емкость диода при заданном смещении. Часто Сд измеряется при Uобр= 5 В.

В табл. 4.4 приведены параметры некоторых импульсных диодов. Импульсные диоды выполняются точечными и плоскостными с малой площадью перехода.

Таблица 4.4 Параметры импульсных диодов

Тип

диода

Iпр,

мА

Uпр

Uпр.имп

Uобр

Iобр,

мкА

tвосст,

мкс

tуст,

мкс

C

(Uобр=5В),

пФ

В

Д18

Д219А

КД503А

20

50

20

1

1

1

5,0

2,5

2,5

20

70

30

50

1

10

<0,1

0,5

0,01

<0,08

0,5

15

5

По величине tвост импульсные диоды подразделяются на :

  • скоростные, или микросекундные 1мкс< tвост <0,1мс

  • сверхскоростные, или наносекундные tвост <0,1мкс

Прямое включение диода

На p-n-переход диода может оказывать воздействие напряжение, подаваемое с внешних источников. Такие показатели, как величина и полярность, будут сказываться на его поведении и проводимом через него электрическом токе.

Ниже подробно рассмотрен вариант, при котором происходит подключение плюса к области p-типа, а отрицательного полюса к области n-типа. В этом случае произойдет прямое включение:

  1. Под воздействием напряжения от внешнего источника, в p-n-переходе сформируется электрическое поле, при этом его направление будет противоположным относительно внутреннего диффузионного поля.
  2. Напряжение поля значительно снизится, что вызовет резкое сужение запирающего слоя.
  3. Под воздействием этих процессов значительное количество электронов обретет возможность свободно переходить из p-области в n-область, а также в обратном направлении.
  4. Показатели тока дрейфа во время этого процесса остаются прежними, поскольку они напрямую зависят только от числа неосновных заряженных носителей, находящихся в области p-n-перехода.
  5. Электроны обладают повышенным уровнем диффузии, что приводит к инжекции неосновных носителей. Иными словами, в n-области произойдет повышение количества дырок, а в p-области будет зафиксирована повышенная концентрация электронов.
  6. Отсутствие равновесия и повышенное число неосновных носителей заставляет их уходить вглубь полупроводника и смешиваться с его структурой, что в итоге приводит к разрушению его свойств электронейтральности.
  7. Полупроводник при этом способен восстановить свое нейтральное состояние, это происходит благодаря получению зарядов от подключенного внешнего источника, что способствует появлению прямого тока во внешней электрической цепи.

Где применяется на практике

С развитием научно-технического прогресса применение выпрямительных диодов стало необходимостью. Они используются в таких узлах и механизмах, как:

  • Блоки питания двигателей наземных, водных и воздушных транспортных средств, промышленных станков, буровых установок.
  • Диодные мосты для сварочных аппаратов.
  • Выпрямительные установки для гальванических ванн.
  • Установки для очистки воздуха и воды.
  • Высоковольтные линии передач.

Схемы выпрямительных устройств делятся на однофазные и многофазные, однополупериодные и двухполупериодные. Самую простую двухполупериодную схему можно построить на основе двух однополупериодных. В такой выпрямительной схеме присутствуют два диода и один резистор. Если же применить не два, а четыре диода, тогда коэффициент полезного действия существенно повысится.

Качество выпрямителя отражает коэффициент выпрямления. Его величина определяется соотношением прямого и обратного токов. Чем выше коэффициент, тем лучше выпрямитель справляется со своей работой.

Диоды на практике применяются не только в качестве выпрямительных, но и детекторных приборов. Из диодных выпрямителей очень легко можно сконструировать работающие ограничители сигнала. Для этого необходимо подключить два диода параллельно. В таком положении они будут выступать отличной и эффективной защитой для входа усилителя. Например, этот способ используют для микрофонного усилителя, так как он способствует максимальному увеличению качества и уровня сигнала.

Диоды «вживают» в логические приборы, а также рации, теленяни и другие коммутаторы, задачей которых является передача четких бесперебойных удаленных сигналов.

Востребованными на данный момент являются и светодиоды. Еще несколько десятков лет назад их применяли лишь в качестве индикаторов внутри различных приборов. На сегодняшний день светодиодами оснащены и такие простые устройства, как ручные фонарики, и более сложная техника, например, жидкокристаллические телевизоры.

Подводя итог, можно сказать, что современные выпрямительные диоды представлены в большом ассортименте. Они отличаются и своим конструктивным исполнением, и рабочими характеристиками. При выборе нужного радиоэлемента следует руководствоваться данными, приведенными в справочных пособиях.

История создания светодиода.

Она насчитывает всего чуть больше ста лет. Первое упоминание о свечении диода относится к 1907 году. Английский физик Генри Раунд заметил разноцветное излучение при течении электричества через соединения карбид кремния-металл. Такое явление получило название электролюминесценция.

Спустя почти двадцать лет в 1923 году российский ученый Олег Лосев проводил подобные эксперименты в Нижнем Новгороде. Физик обнаружил свечение на месте контакта карбида кремния и стальной проволоки. Лосев опубликовал результаты своих исследований, и обосновал, что электролюминесценция наблюдается именно на границе соприкосновения разнородных материалов. Теоретическую базу под открытие подвести не смогли, и дальнейшего развития оно не получило. Хотя Лосев предсказал использование электролюминесценции для создания маломощных и миниатюрных источников света. Физик даже придумал конструкцию светового реле, но дальше исследования не продолжились.

В 1961 году, еще через сорок лет, американские изобретатели Д. Р. Байард и Г. Питтман придумали технологию выпуска светодиодов из арсенида галлия. В 1962 году они получили патент, и начался промышленный выпуск. Однако, их led-элемент испускал инфракрасное излучение, то есть был не видим человеческому глазу.

Но в том же 1962 году американский физик Ник Холоньяк изобрел красный светодиод. В 1971 году его соотечественник Жак Панков придумал синий. А в 1972 Джордж Крафорд открыл желтый led.

Впрочем, до семидесятых годов XX века светоизлучающие диоды оставались очень дорогими. Фирма «Монсанто» первой в мире удалось организовать массовое производство led в качестве индикатора.

В семидесятых годах группе советских ученых под начальством Ж. Алферова удалось синтезировать неизвестные до этого полупроводниковые вещества. Их начали получать на предприятиях и в лабораториях. А на основе этих соединений запустили серийное изготовление светодиодов.

В 1983 году Citizen Electronics придумала и внедрила на своих предприятиях светодиоды плоской конструкции (SMD).

В девяностые годы японские ученые И. Акасаки, Х. Амано и С. Накамура придумали, как значительно удешевить производство синих led. Технологию успешно опробовала фирма Nichia с 1993 года. А с 1996 года они начали изготовление белых led-элементов, чей свет получается из сочетания красного, синего и зеленого. В дальнейшем на базе открытия японских ученых стали стремительно развиваться новые методы производства световой техники: лампочек, дисплеев с подсветкой и других приборов.

В 2003 Citizen Electronics придумали новейшую технологию производства СОВ (Chip-On-Board). Она заключается в монтаже полупроводникового элемента на подложку при помощи специального непроводящего клея.

Очевидно, что история светоизлучающих диодов только набирает обороты, а технологии становятся все более совершенными.

Для создания разных цветов потребовалось много времени.

Виды диодов

Стабилитроны

Стабилитроны представляют из себя те же самые диоды. Даже из названия понятно, чтоб стабилитроны что-то стабилизируют. А стабилизируют они напряжение. Но чтобы стабилитрон выполнял стабилизацию, требуется одно условие. Они должны подключатся противоположно, чем диоды. Анод на минус, а катод на плюс. Странно не правда ли? Но почему так? Давайте разберемся. В Вольт амперной характеристике (ВАХ) диода используется положительная ветвь – прямое направление, а вот в стабилитроне другая часть ветки ВАХ – обратное направление.

Снизу на графике мы видим стабилитрон на 5 Вольт. Сколько бы у нас не изменялась сила тока, мы все равно будем получать 5 Вольт ;-). Круто, не правда ли? Но есть и подводные камни. Сила тока не должны быть больше, чем в описании на диод, иначе он выйдет из строя от высокой температуры – Закон Джоуля-Ленца. Главный параметр стабилитрона – это напряжение стабилизации (Uст). Измеряется в Вольтах. На графике вы видите стабилитрон с напряжением стабилизации 5 Вольт. Также есть диапазон силы тока, при котором будет работать стабилитрон – это минимальный и максимальный ток (Imin, Imax). Измеряется в Амперах.

Выглядят стабилитроны точно также, как и обычные диоды:

На схемах обозначаются вот так:

Светодиоды

Светодиоды – особый класс диодов, которые излучают видимый и невидимый свет. Невидимый свет – это свет в инфракрасном или ультрафиолетовом диапазоне. Но для промышленности все таки большую роль играют светодиоды с видимым светом. Они используются для индикации, оформления вывесок, светящихся баннеров, зданий а также для освещения. Светодиоды имеют такие же параметры, как и любые другие диоды, но обычно их максимальный ток значительно ниже.

Предельное обратное напряжение (Uобр) может достигать 10 Вольт. Максимальный ток (Imax) будет ограничиваться для простых светодиодов порядка 50 мА. Для осветительных больше. Поэтому при подключении обычного диода нужно вместе с ним последовательно подключать резистор. Резистор можно рассчитать по нехитрой формуле, но в идеале лучше использовать переменный резистор, подобрать нужное свечение, замерять номинал переменного резистора и поставить туда постоянный резистор с таким же номиналом.

Лампы освещения из светодиодов потребляют копейки электроэнергии и стоят дешево.

Очень большим спросом пользуются светодиодные ленты, состоящие из множества SMD светодиодов. Смотрятся очень красиво.

На схемах светодиоды обозначаются так:

Не забываем, что светодиоды делятся на индикаторные и осветительные. Индикаторные светодиоды обладают слабым свечением и используются для индикации каких-либо процессов, происходящих в электронной цепи. Для них характерно слабое свечение и малый ток потребления

Ну и осветительные светодиоды – это те, которые используются в ваших китайских фонариках, а также в LED-лампах

Светодиод – это токовый прибор, то есть для его нормальной работы требуется номинальный ток, а не напряжение. При номинальном токе на светодиоде падает некоторое напряжение, которое зависит от типа светодиода (номинальной мощности, цвета, температуры). Ниже табличка, показывающая какое падение напряжения бывает на светодиодах разных цветов свечения при номинальном токе:

Как проверить светодиод можно узнать из этой статьи.

Тиристоры

Тиристоры представляют собой диоды, проводимость которых управляется с помощью третьего вывода – управляющего электрода (УЭ). Основное применение тиристоров – это управление мощной нагрузкой с помощью слабого сигнала, подаваемого на управляющий электрод. Выглядят тиристоры примерно как диоды или транзисторы. У тиристоров параметров столько, что не хватит статьи для их описания. Главный параметр – Iос,ср. – среднее значение тока, которое должно протекать через тиристор в прямом направлении без вреда для его здоровья. Немаловажным параметром является напряжение открытия тиристор – (Uу), которое подается на управляющий электрод и при котором тиристор полностью открывается.

а вот так примерно выглядят силовые тиристоры, то есть тиристоры, которые работают с большой силой тока:

На схемах триодные тиристоры выглядят вот таким образом:

Существуют также разновидности тиристоров – динисторы и симисторы. У динисторов нет управляющего электрода и он выглядит, как обычный диод. Динисторы начинают пропускать через себя электрический ток в прямом включении, когда напряжение на нем превысит какое-то значение. Симисторы – это те же самые триодные тиристоры, но при включении пропускают через себя электрический ток в двух направлениях, поэтому они используются в цепях с переменным током.

Устройство диодов

Об устройстве первых диодов уже говорилось. Диффузионные приборы изготавливали вплавлением капли материала n-проводимости в каплю большего размера из материал p-проводимости или наоборот. “Большая капля” часто охлаждалась теплоотводом в мощных приборах. Для защиты диода от повреждений его заключали в герметичный, по возможности теплоотводящий корпус из металла со стеклянным изолятором и вторым электродом.

Планарные диоды часто имеют совсем другую, более современную конструкцию. Это тонкий плоский кристалл на охлаждающей подложке, подвергнутый сложной фото- и химической обработке, и облученный ионами из легирующей пушки. “Фото” – это уже устарело, используют не свет, а жесткие УФ-лучи или рентген.

Принцип напоминает традиционную фотографию: засвечивание и легирование производится через шаблоны с последующими травлениями (подобными проявке для фото). Мощные диоды могут получать, соединяя параллельно несколько других. Это делает тепловую нагрузку равномерной по подложке. Фактически это та же технология, по которой производят микросхемы. Поэтому современные мощные диоды выполняют в корпусах из реактопластов с металлическими теплоотводами.

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий