Что означает селективность в электрике, виды селективной защиты

Виды защиты

Временная

В цепь подключается ряда автоматов, обладающих различной выдержкой по времени, но идентичными токовыми параметрами. В итоге приборы подстраховывают один другого от ближайшего к неисправной зоне до наиболее удаленного устройства. К примеру, сработка ближайшего произойдет спустя 0,02 с, последующего — через 0,5 с, последнего, если не произойдет сработки предыдущих- спустя 1 с.

Принципиальная схема для выбора автоматических выключателей и УЗО по времени срабатывания

Про типы УЗО и его подключение подробно описано в статьях:

  • Какие типы УЗО существуют и в чем их различие?
  • Как правильно подключить УЗО? Схема подключения

По току

Принцип работы такого типа селективности одинаков с предыдущим, за исключением выдержки, происходящей по значению тока, а не по скорости сработки. Например, выключатели установлены на вводе 25А, затем на 16А, а после — на 10А. Срок сработки у всех приборов может быть равным.

Принципиальна схема подбора автоматических выключателей и УЗО по току срабатывания

По зонам

При определении нарушения диапазона тока сработка прибора позволяет с наиболее возможной точностью выявить аварийную зону и прекратить ее питание.

Принцип логики

Такой тип селективности в сети организуется обмен данными между подключенными к сети по последовательной схеме защитными приборами со значительным количеством порогов избирательности. При этом появляется возможность изменения задержки срока срабатывания любой из защит.

Принцип действия схемы логической селективности позволяет выбрать требуемый отключающий автомат

В итоге происходит сработка именно тех защитных приборов, которые располагаются близко от поставщиков электропитания, а близкие к оборудованию не подключаются. Это позволяет сделать выбор в пользу автомата, отключающего подачу аварийного тока.

По направленности

Включение приборов защиты осуществляется по очереди, формируемой направленностью тока. С помощью вектора напряжения задается некая точка, по отношению к которой сам вектор обладает фазовым сдвигом. Реле при этом реагирует и на напряжение, и на поступающий ток. Подлежащая защите цепь приспосабливается к размещению как в отключаемой зоне, так и на участке, на котором не производится отключение.

Включение устройств УЗО и выключателей, реализуемое по принципу направленности селективной защиты

При возникновении короткого замыкания в точке 1 устройство защиты D1 и выключатель, управляющийся им, среагируют, и будет произведено отключение. Сработки других приборов в этом случае не осуществится.

При возникновении короткого замыкания во 2-й точке обе защиты и выключатель не сработают.

Преимуществом такой схемы можно назвать простоту устройства. К недостатку следует отнести необходимость установки вспомогательного оборудования — трансформаторов напряжения, требующихся для выявления направленности тока.

По принципу дифференцирования

Такой тип селективности свойственен цепям с подключением мощных потребителей.

Отступления параметров токов по фазе и амплитуде в пунктах А и В будут определяться как аварийные. При нештатном событии за границами зоны АВ не фиксируются. Защита сработает при условии превышения величиной тока IA величины тока IB. Для реализации такого принципа требуется установка трансформаторов тока особых типов, позволяющих выстроить надежную защиту от процессов, оказывающих воздействие на сработку приборов:

  • намагничивающего тока трансформатора;
  • насыщения датчиков тока и образующегося тока погрешности;
  • емкостного элемента тока ЛЭП.

Принцип селективной дифференциальной защиты при подключении оборудования со значительной мощностью

Преимуществами такого метода являются:

  • высокий уровень чувствительности;
  • высокая скорость отключения в защищаемой зоне.

К минусам относятся:

  • немалая стоимость;
  • повышенные требования к сотрудникам, получивших доступ к работе с защитой;
  • необходимость обустройства наибольшей токовой защиты при возникновении нештатных событий.

Пуэ селективность автоматических выключателей

» Разное » Пуэ селективность автоматических выключателей

instrument.guru > Электричество > Принцип работы селективности автоматических выключателей

Селективность в области электрики является одним из основополагающих понятий. Она представляет собой защиту электрических устройств от поломок или каких-либо отклонений в работе. С помощью данной функции автоматы работают дольше, повышается уровень безопасности.

  • Что такое селективность в области электрики?
  • Типы селективности электрических приборов
  • Таблица селективности
  • Расчёт селективности
  • Карта селективности
  • Селективность автоматов ПУЭ
  • Принцип селективности для выбора выключателей

Что такое селективность в области электрики?

Селективность или избирательность – особенность релейной защиты, которая определяется умением находить неисправный элемент всей электрической системы и выключать именно его. Защита может быть двух видов: абсолютная и относительная, в зависимости от отключения участков. В первом случае более точно срабатывают предохранители на том участке, где произошло замыкание или поломка. Второй тип селективности заставляет отключаться автоматы, которые находятся выше, если защита других не вступила в действие по каким-либо причинам.

Типы селективности электрических приборов

Классификацию защиты электрических устройств можно представить в различии схем подключения:

  • Полная. Если несколько приборов подключены последовательно, то на неисправность быстрее реагирует тот, что находится ближе к зоне аварии.
  • Частичная. Принцип действия селективности автоматов аналогичен с полной, но существует ограничение величины тока.
  • Временная. Такого рода избирательность предполагает разное время выдержки автоматов с одинаковыми характеристиками на срабатывание в случае поломки. Эта защита предназначена для того, чтобы подстраховать автоматы по скорости выключения. Например: первый начинает действовать спустя 0,2 сек, второй – 0,4 сек и т. д.
  • Токовая. Принцип работы селективности тот же, что и у временной, но в этом случае параметром выступает максимальная токовая отметка. Выставляются определённые значения в порядке убывания от источника питания до объекта нагрузки. Например, при вводе 28 А., к розеткам 18 А и 12 – к свету.
  • Времятоковая. Одна из самых сложных систем по защите от неисправностей. Аппараты подразделяются на четыре различные группы: A, B, C и D, каждая из которых реагирует на ток. В этом случае сложно составить схему защиты автоматических выключателей при коротком замыкании. Наиболее эффективна защита будет при первой группе А. Её используют в основном для электронных цепей. Наибольшую популярность и распространённость получили аппараты типа С, однако следует серьёзно отнестись к их установке.
  • Зонная. Этот способ защиты используется чаще всего в промышленности, так как он является дорогостоящим и довольно сложным. За работой электрической сети следят специальные приборы. При достижении установленного значения все данные передаются в центр контроля, где выбирается аппарат для выключения. Селективность этого вида предполагает наличие специальных электронных расцепителей. Они действуют следующим образом: при обнаружении какого-либо нарушения аппарат, расположенный ниже, подаёт сигнал другому автомату, который находится выше. Если в течение 1 секунды не сработает первое устройство, включится второе.
  • Энергетическая. Здесь автоматы действуют очень быстро, благодаря чему ток короткого замыкания не успевает достичь максимального значения.

Таблица селективности

Защита автоматических выключателей исправно работает обычно при маленьких перегрузках. При коротком замыкании сформировать селективность намного тяжелей. Для таких целей существует таблица селективности, которая позволяет генерировать связки с избирательностью вступления в действие. Один расчёт предназначен для одного вида аппарата. Ниже представлен пример такой таблицы, который также можно найти на интернет-сайтах производителей автоматов.

Расчёт селективности

Чаще всего защитными устройствами выступают обыкновенные автоматические выключатели. Их селективность обеспечивается с помощью верного выбора и настроек параметров. Принцип работы таких выключателей обусловлен выполнением следующего условия:

  • Iс.о.послед ≥ Kн.о.* I к.пред., где: — Iс.о.послед — ток, при котором вступает в действие защита;
  • — I к.пред. — ток короткого замыкания в конце зоны действия защиты;
  • — Kн.о. — коэффициент надёжности, зависящий от параметров.

Карта селективности защиты

Идеальных вариантов обеспечения питания не бывает. Разные режимы нагрузки подразумевают различные аварийные ситуации. Именно карта селективности позволяет увидеть работу релейной защиты виртуально. Моделируя проект на бумаге, инженеры могут убедиться, что во всех режимах защита может работать правильно. Для разветвленных схем характерно наличие защитных устройств с различными времятоковыми характеристиками. Для примера возьмем любой автомат и определим его, как «нашу защиту».

Остальные устройства на схеме назовем смежными. Главный принцип правильной организации — времятоковые характеристики всех устройств не должны пересекаться на одном линейном уровне. Если провести временную линию в качестве оси координат, то между ступенями селективности должен быть разрыв. Увидеть это можно только на графиках. Это и есть карта селективности: на нем совмещены характеристики смежных защит.

Для построения карт лучше использовать специальные компьютерные программы. Хотя профессиональные инженеры легко строят графики карандашом. После выстраивания всех параметрических кривых, график проверяется на их пересечение. При возникновении такой ситуации, проверяется критичность: возможно, ничего менять не потребуется. Если линии электропитания не находятся в зависимости друг от друга, разведение ничего не меняет.

В остальных случаях необходимо обеспечить временную разницу по оси времени не менее 0.25 секунды.

Кроме того, даже если пересекаются селективности по времени срабатывания, разведение может быть организовано по разнице тока отсечки. Как правило, используются оба способа, это можно учитывать в построении карты, а можно оставить на практическом уровне.

Какая защита бывает

Как и любые другие системы, защиту разделяют на видовые категории. К ним относятся:

  • Вид полной селективности. В этом случае в цепи есть несколько устройств последовательного подключения.
  • Вид частичной селективности. Похож на первый вид, но система будет работать, только если токи достигнут определённых показателей.
  • Вид временной селективности. К сети подключают автоматические выключатели с едиными параметрами тока, но разными временными выдержками. Таким образом, автоматические выключатели будут «страховать» друг друга от ближайшего к поломке до дальнего от неё. Автоматы будут срабатывать поочерёдно в разных временных промежутках.
  • Вид токовой селективности. Похож на временную селективность. Различается не время, а величина значений тока. Например, один из автоматов сработает при двадцати пяти Амперах, другой при шестнадцати, третий — при десяти. Отключаться могут в одно и то же время.

  • Вид времятоковой селективности. Здесь подразумевается отключение не только при определённых значениях тока, но и время выключения.
  • Вид зонной селективности. Определяет пороговые нарушения, благодаря чему с филигранной точностью находит поражённый участок и отключает его от электричества.
  • Вид электрической селективности. Автоматический выключатель является центром системы по предупреждению поломок в сети. Сеть отключается очень быстро, так что ток не может достигнуть максимальных значений.

Это основные виды данной защиты системы. Кроме того, иногда её разделяют на:

  • Абсолютная селективность. В этом виде в сети отключаются только поражённые участки сети, как в случае с предохранителями в электрических установках.
  • Относительная селективность. В этом виде защищены не только определённые участки, но и соседние участки в сети.

Селективность автоматических выключателей ПУЭ — Пожарная безопасность

Автоматическими выключателями называются приборы, отвечающие за защиту электроцепи от повреждений, связанных с воздействием на нее тока большой величины.

Слишком сильный поток электронов способен вывести из строя бытовую технику, а также вызвать перегрев кабеля с последующим оплавлением и возгоранием изоляции.

Если вовремя не обесточить линию, это может привести к пожару, Поэтому, в соответствии с требованиями ПУЭ (Правила устройства электроустановок), эксплуатация сети, в которой не установлены электрические автоматы защиты, запрещена. АВ обладают несколькими параметрами, один из которых – время токовая характеристика автоматического защитного выключателя. В этой статье мы расскажем, чем различаются автоматические выключатели категории A, B, C, D и для защиты каких сетей они используются.

Особенности работы автоматов защиты сети

К какому бы классу ни относился автоматический выключатель, его главная задача всегда одна – быстро определить появление чрезмерного тока, и обесточить сеть раньше, чем будет поврежден кабель и подключенные к линии устройства.

Токи, которые могут представлять опасность для сети, подразделяются на два вида:

  • Токи перегрузки. Их появление чаще всего происходит из-за включения в сеть приборов, суммарная мощность которых превышает ту, что линия способна выдержать. Другая причина перегрузки – неисправность одного или нескольких устройств.
  • Сверхтоки, вызванные КЗ. Короткое замыкание происходит при соединении между собой фазного и нейтрального проводников. В нормальном состоянии они подключены к нагрузке по отдельности.

Устройство и принцип работы автоматического выключателя – на видео:

Токи перегрузки

Величина их чаще всего незначительно превышает номинал автомата, поэтому прохождение такого электротока по цепи, если оно не затянулось слишком надолго, не вызывает повреждения линии.

В связи с этим мгновенного обесточивания в таком случае не требуется, к тому же нередко величина потока электронов быстро приходит в норму.

Каждый АВ рассчитан на определенное превышение силы электротока, при котором он срабатывает.

За отключение питания под воздействием мощной нагрузки отвечает тепловой расцепитель, основой которого является биметаллическая пластина.

Этот элемент нагревается под воздействием мощного тока, становится пластичным, изгибается и вызывает срабатывание автомата.

Токи короткого замыкания

Поток электронов, вызванный КЗ, значительно превосходит номинал устройства защиты, в результате чего последнее немедленно срабатывает, отключая питание.

За обнаружение КЗ и немедленную реакцию аппарата отвечает электромагнитный расцепитель, представляющий собой соленоид с сердечником.

Последний под воздействием сверхтока мгновенно воздействует на отключатель, вызывая его срабатывание. Этот процесс занимает доли секунды.

Однако существует один нюанс. Иногда ток перегрузки может также быть очень большим, но при этом не вызванным КЗ. Как же аппарат должен определить различие между ними?

На видео про селективность автоматических выключателей:

Здесь мы плавно переходим к основному вопросу, которому посвящен наш материал. Существует, как мы уже говорили, несколько классов АВ, различающихся по времятоковой характеристике.

Наиболее распространенными из них, которые применяются в бытовых электросетях, являются устройства классов B, C и D. Автоматические выключатели, относящиеся к категории A, встречаются значительно реже.

Они наиболее чувствительны и используются для защиты высокоточных аппаратов.

Между собой эти устройства различаются по току мгновенного расцепления. Его величина определяется кратностью тока, проходящего по цепи, к номиналу автомата.

Нагрузка

В данном контексте под понятием нагрузка подразумеваются все электроприборы, которые применяются в доме или квартире и потребляют электроэнергию. Наверняка всем известно, что такое КПД – коэффициент полезного действия. Этот параметр определяет сколько электроэнергии затрачивается на полезное действие, а сколько на побочный эффект. Например, взять лампу накаливания, ее главная задача светить, но при этом она еще нагревается. Приблизительно 40% затраченной энергии тратится на нагрев и лишь 60% на свет. Отсюда КПД = 0,6. Здесь все просто, но вот существует еще и коэффициент мощности или как говорят косинус фи. Что же это такое?

Полная селективность между модульными автоматическими выключателями

Как правило, специалисты решают задачу согласования рабочих характеристик модульных автоматических выключателей со стороны питания и нагрузки, используя токовый метод. Он основан на выборе аппаратов защиты с разными уставками по току, причём более высокие значения должно иметь оборудование на стороне питания. Для подбора автоматических выключателей используются таблицы селективности и специальное программное обеспечение. Но даже такая тщательная проработка схемы позволяет добиться лишь частичной координации рабочих характеристик модульных автоматических выключателей. Полная селективность обеспечивается только в распределительных боксах, где расчётные токи к.з. небольшие, что на самом деле редкость. Как правило, даже в квартирных щитах достигается лишь частичная селективность. Рассмотрим такой пример – в электрическом шкафу установлены автоматические выключатели с характеристикой С. Номинальный ток вводного аппарата – 32А, устройства на отходящей линии – 16А. Нижняя граница зоны срабатывания вводного автомата 5In=5·32=160А. Она же является и верхней границей срабатывания для нижестоящего автомата. 1 Очевидно, что в данном случае полная селективность не обеспечивается.

Часто задача согласованной работы автоматических выключателей со стороны нагрузки и питания во всём диапазоне сверхтоков остаётся нерешённой, что приводит к авариям. «Не так давно в одном крупном банке из-за чайника, случайно включённого в розетку «чистых» сетей 1 , и отсутствия полной селективности в распределительных шкафах были обесточены все компьютеры на этаже, что привело к потере полугодового отчёта», — рассказывает Алексей Азаров, начальник отдела электрических сетей и систем компании «ЭкоПрог».

До недавнего времени полную селективность можно было реализовать, установив в качестве вводного устройства в распределительном щите вместо модульного автоматического выключателя аппарат в литом корпусе. Для указанного оборудования возможны такие способы координации рабочих характеристик, как временной, энергетический и зонный 2 . Но данное решение не всегда целесообразно, так как оно приводит к таким последствиям, как:

  • удорожание проекта;
  • увеличение занимаемых распределительными шкафами площадей – аппараты в литом корпусе и воздушные автоматические выключатели по своим габаритам значительно превосходят модульное оборудование;
  • сложности в установке и эксплуатации (аппараты в литом корпусе оснащаются электронными расцепителями, которые нуждаются в настройке).

«Заменить модульные автоматические выключатели на аппараты защиты другого типа для инженера означает пожертвовать компактностью и единообразием технических решений, а это не всегда возможно, — утверждает Павел Томашёв, инженер по группе изделий компании АББ, лидера в производстве силового оборудования и технологий для электроэнергетики и автоматизации. — Специально для того, чтобы решить проблему обеспечения полной координации между модульными аппаратами защиты, наша компания разработала новый селективный автоматический выключатель серии S750DR. Данное устройство – новинка для нашей страны. Оно представляет решение для достижения согласованности рабочих характеристик, при котором невозможно одновременное отключение вышестоящего и нижестоящего аппаратов. В данном модульном автоматическом выключателе реализован дополнительный токовый путь, благодаря которому обеспечивается задержка срабатывания по времени. Линейка автоматических выключателей S750DR включает в себя аппараты от 0,5 до 63А».

Селективный модульный автоматический выключатель обеспечивает координацию рабочих характеристик аппаратов защиты независимо от напряжения сети. Такой аппарат защиты не требует дополнительного питания для замыкания/размыкания контактов и для выполнения защитной функции, поскольку устройство является электромеханическим.

Виды защиты

Временная

В цепь подключается ряда автоматов, обладающих различной выдержкой по времени, но идентичными токовыми параметрами. В итоге приборы подстраховывают один другого от ближайшего к неисправной зоне до наиболее удаленного устройства. К примеру, сработка ближайшего произойдет спустя 0,02 с, последующего — через 0,5 с, последнего, если не произойдет сработки предыдущих- спустя 1 с.

Принципиальная схема для выбора автоматических выключателей и УЗО по времени срабатывания

Про типы УЗО и его подключение подробно описано в статьях:

  • Какие типы УЗО существуют и в чем их различие?
  • Как правильно подключить УЗО? Схема подключения

По току

Принцип работы такого типа селективности одинаков с предыдущим, за исключением выдержки, происходящей по значению тока, а не по скорости сработки. Например, выключатели установлены на вводе 25А, затем на 16А, а после — на 10А. Срок сработки у всех приборов может быть равным.

Принципиальна схема подбора автоматических выключателей и УЗО по току срабатывания

По зонам

При определении нарушения диапазона тока сработка прибора позволяет с наиболее возможной точностью выявить аварийную зону и прекратить ее питание.

Принцип логики

Такой тип селективности в сети организуется обмен данными между подключенными к сети по последовательной схеме защитными приборами со значительным количеством порогов избирательности. При этом появляется возможность изменения задержки срока срабатывания любой из защит.

Принцип действия схемы логической селективности позволяет выбрать требуемый отключающий автомат

В итоге происходит сработка именно тех защитных приборов, которые располагаются близко от поставщиков электропитания, а близкие к оборудованию не подключаются. Это позволяет сделать выбор в пользу автомата, отключающего подачу аварийного тока.

По направленности

Включение приборов защиты осуществляется по очереди, формируемой направленностью тока. С помощью вектора напряжения задается некая точка, по отношению к которой сам вектор обладает фазовым сдвигом. Реле при этом реагирует и на напряжение, и на поступающий ток. Подлежащая защите цепь приспосабливается к размещению как в отключаемой зоне, так и на участке, на котором не производится отключение.

Включение устройств УЗО и выключателей, реализуемое по принципу направленности селективной защиты

При возникновении короткого замыкания в точке 1 устройство защиты D1 и выключатель, управляющийся им, среагируют, и будет произведено отключение. Сработки других приборов в этом случае не осуществится.

При возникновении короткого замыкания во 2-й точке обе защиты и выключатель не сработают.

Преимуществом такой схемы можно назвать простоту устройства. К недостатку следует отнести необходимость установки вспомогательного оборудования — трансформаторов напряжения, требующихся для выявления направленности тока.

По принципу дифференцирования

Такой тип селективности свойственен цепям с подключением мощных потребителей.

Отступления параметров токов по фазе и амплитуде в пунктах А и В будут определяться как аварийные. При нештатном событии за границами зоны АВ не фиксируются. Защита сработает при условии превышения величиной тока IA величины тока IB. Для реализации такого принципа требуется установка трансформаторов тока особых типов, позволяющих выстроить надежную защиту от процессов, оказывающих воздействие на сработку приборов:

  • намагничивающего тока трансформатора;
  • насыщения датчиков тока и образующегося тока погрешности;
  • емкостного элемента тока ЛЭП.

Принцип селективной дифференциальной защиты при подключении оборудования со значительной мощностью

Преимуществами такого метода являются:

  • высокий уровень чувствительности;
  • высокая скорость отключения в защищаемой зоне.

К минусам относятся:

  • немалая стоимость;
  • повышенные требования к сотрудникам, получивших доступ к работе с защитой;
  • необходимость обустройства наибольшей токовой защиты при возникновении нештатных событий.

Селективность по току

Этот вид селективной защиты устанавливается в каждой электрической цепи в её начале. Если в электрической сети, состоящей из этих цепей, происходит короткое замыкание, ток увеличивается соответственно её импедансу. При этом индуктивность ограничивает скорость нарастания тока и существует некоторая минимальная величина его. Эта величина и является порогом срабатывания защиты.

При этом защитные устройства могут сработать и при несколько меньших значениях силы тока, если это необходимо. Но величина тока срабатывания должна находиться в диапазоне значений силы тока, которое будет больше чем при коротком замыкании за пределами области покрытия защиты. Пример токовой защиты цепи с трансформатором, подключенным между кабельными линиями электропередачи, показан на изображении ниже:

Преимуществом избирательности по току является возможность реагирования только на повреждения внутри защищаемой области и в привязке к потребителю, исключая аварии вне защищаемой области. Отличается быстротой срабатывания, небольшой стоимостью и схемотехнической простотой. В этом её преимущество. Недостатком является сложность настройки избирательности последовательно установленных устройств защиты при их расположении в соседних областях из-за похожести параметров процессов, определяемых аварийными ситуациями.

Советуем изучить Для чего делают аварийное освещение в доме

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий