Электромагнитное реле: устройство, маркировка, виды + тонкости подключения и регулировки

Применение сигнального реле

Указательное реле применяются в электрических сетях, имеющих постоянные и переменные характеристики тока. Коммутация применяется в системах автоматизации, регулирование электроприводами. Указательное реле применяется в электроэнергетических и технологических агрегатах и системах контроля над ними.

Прибор указательное реле

Указательное реле применяется в большинстве отраслях промышленности. Самой популярной является энергетическая область применения. При этом коммутация происходит посредством автоматики, при помощи защиты, а также работниками.

Некоторые виды реле имеются в бытовых приборах, таких как холодильник, стиральная машина, телевизоры, котлы отопления. Эти приборы более чувствительны к перепадам напряжения и реагируют как на низкий его показатель, так и на высокий. При этом такая бытовая техника может выйти из строя.

Помимо этого приборы получили большой спрос в военном деле, самолетостроении, в космических кораблях, автотранспорте и на железных дорогах. Реле для данных сфер производства изготавливаются с учетом ударов, больших вибраций, линейного ускорения, то есть разрушающих факторов длительного и жесткого применения. Одновременно с этим указывается допустимое положение, при котором сохраняется работоспособность реле.

Что такое электромагнитное реле?

Cразу отметим, что из всего многообразия реле мы рассмотрим лишь электромагнитные реле. А из множества электромагнитных реле рассмотрим те, которые наиболее широко применяются в околокомпьютерных устройствах.

Электромагнитное реле (далее — реле) – это устройств, позволяющее посредством небольших токов управлять большими токами.

Мы уже сталкивались ранее с подобными устройствами. Да, когда изучали биполярные и полевые транзисторы. Так, в биполярном транзисторе небольшой ток базы управляет гораздо большим (в десятки и сотни раз) током коллектора.

Отметим, что транзисторы, в отличие от реле, гораздо более быстродействующие приборы, и могут управлять более высокочастотными сигналами. Но реле в целом более надежная штука, чем полупроводниковый транзистор.

В электромагнитном реле, в отличие от биполярного транзистора, управляющая цепь гальванически развязана от силовой, что, в общем случае, является преимуществом.

Виды электрических схем

Такие реле называют поляризованными. Для пояснения принципа работы коммутационных устройств при необходимости на их контакт-деталях изображают квалифицирующие символы, приведенные в табл. Это прекрасно видно по таблице, в которой указаны параметры реле серии Bestar BSC.

Условные графические обозначения светильников и прожекторов Радует, что в обновленной версии ГОСТ добавлены изображения светодиодных светильников и светильников с компактными люминесцентными лампами.


Сам же пружинящий контакт закреплён на ярме. Шкаф, панель, пульт, щиток одностороннего обслуживания, пост местного управления Шкаф, панель двухстороннего обслуживания Шкаф, щит, пульт из нескольких панелей одностороннего обслуживания Шкаф, щит, пульт из нескольких панелей двухстороннего обслуживания Щит открытый Отрисовку в AutoCAD удобно выполнять при помощи блоков и динамических блоков. А нормально-замкнутые контакты N.


Условные графические обозначения на электрических схемах и схемах автоматизации: ГОСТ 2.


Обозначение условное графическое и буквенный код элементов электрических схем Наименование элемента схемы Буквенный код Машина электрическая.


Условное обозначение полярного реле, на электрической принципиальной схеме, наносится в виде прямоугольника с двумя выводами и жирной точкой у одного из разъёмов. Как проверить реле? Как читать электрические схемы. Радиодетали маркировка обозначение

https://youtube.com/watch?v=-eT5_urCTwM

Регулировка ЭМР

Способ измерений в зависимости от типа реле может существенно отличаться

При регулировке важно учитывать следующие принципы

  • Ослабление возвратной пружины приводит к увеличению времени возврата и снижению напряжения срабатывания.
  • Если увеличить начальный зазор между сердечником и якорем, скорость срабатывания увеличится, а напряжение будет больше. Такой же эффект наблюдается при регулировке конечного зазора в отношении скорости и напряжения возврата.
  • С увеличением числа замыкающих/размыкающих контактов с одновременным увеличением давления пружины происходит повышение напряжение и скорости возврата и срабатывания соответственно.

Необходимо учитывать, что любые изменения напрямую влияют на работу контактной системы. Поэтому при регулировке параметров ЭМР необходимо выбрать положение, при котором возвратная пружина будет максимально натянута, а зазор сможет обеспечить наибольший ход якоря.

Монтаж и точки размещения

Реле-указатели устанавливаются как индикатор сработки в схемах релейной защиты и автоматики.

Реле подключаются как по параллельной схеме, так и последовательно.

При вставке обмотки последовательно устройства подключаются к цепи обмоток иных реле и приборов (к примеру, катушечных выключателей) и при сработке от проходящего в цепи тока, фиксируют момент замыкания.

При втором способе обмотки реле подключаются параллельно обмоткам иных приборов и реле. После подачи на обмотки напряжения устройство фиксирует момент его появления в цепи.

Монтаж блинкера может осуществляться:

  • с лицевой стороны на релейную панель;
  • внутри комплекта защитного оборудования.

Указатель силы тока WT-3 рассчитан на одновременную работу сразу с несколькими каналами

Основные характеристики КУ

К основным характеристикам, на которые следует обратить внимание при выборе данного вида коммутационного устройства, относят:

  • чувствительность – срабатывание от подаваемого на обмотку тока определенной силы, достаточной для включения устройства;
  • сопротивление обмотки электромагнита;
  • напряжение (ток) срабатывания – минимально допустимое значение, достаточное для переключения контактов;
  • напряжение (ток) отпускания – значение параметра, при котором происходит отключение КУ;
  • время притягивания и отпускания якоря;
  • частота срабатывания с рабочей нагрузкой на контактах.

Как подключать импульсные реле для управления несколькими светильниками из разных мест: практические рекомендации

Разберем случай с тремя лампами освещения, хотя их общее количество может быть произвольным. Схема подключения импульсных реле просто увеличится от начальной на число светильников. Сколько ламп, столько и релюшек.

Общее количество кнопок-выключателей выбирается владельцем квартиры по местным условиям.

Главные принципы построения схемы:

  1. Потенциал фазы после защитного автомата распределяется по всем кнопкам слаботочным проводом, а от них он направляется на обмотки бистабильных реле (контакт А1). Силовым же проводником он подводится к клемме 1 каждого выходного контакта, а с клеммы 2 подается на свой светильник.
  2. Потенциал нуля жестко разводится по всем лампочкам проводом освещения, а слаботочкой может быть заведен на контакт А2 всех обмоток.
  3. Каждый светильник работает от силового контакта своего бистабильного реле, которое управляется индивидуальными кнопками.

На первый взгляд здесь ничего сложного нет, но при создании цепочки принудительного отключения от одной кнопки существуют особенности:

  1. внутри квартиры с обычным однофазным питанием для централизованного отключения достаточно параллельными перемычками соединить все контакты OFF и вывести на общую кнопку у входа;
  2. в частном доме с трехфазным питанием каждый потребитель может подключаться от разных фаз и собственного автомата. Способ объединения перемычками выводов OFF становится не приемлемым. Здесь следует применить обычное промежуточное реле. Его контакты станут управлять каждым модулем.

Другими словами, в отдельных случаях для централизованного управления потребителями может потребоваться дополнительное реле сброса.

Обозначил его KL и показал на схеме принцип включения обмотки с общей кнопкой от любой фазы, расположенной вблизи (например, L1) и монтажом промежуточных контактов (KL1.1, KL1.2…) в цепочках централизованного отключения всех задействованных светильников.

Этот же принцип приемлем для централизованного одновременного включения всех импульсных модулей от одной общей кнопки по контакту OFF. Дабы не загромождать картинку лишними линиями, его просто не показываю.

При таком подключении в квартирном щитке располагаются автоматические выключатели разных групп освещения и импульсные реле. От них придется делать довольно разветвленную разводку к многочисленным кнопкам управления, включая централизованные, и светильникам.

Оптимальным вариантом соединения слаботочных жил и силовых проводов становятся обычные клеммники под винт.

Особенности монтажа двухклавишных кнопок с подсветкой в подрозетниках

Подключение слаботочных цепей кнопочных выключателей выполняется последовательно от одного подрозетника к другому по мере удаления от квартирного щитка. При этом все соединения даже для двух кнопок удобно монтировать следующим образом:

  • потенциал фазы, показанный на картинке ниже красным цветом, соединяется от каждых отрезков кабелей по верхним контактам всех клемм кнопок перемычками;
  • жилы управления, идущие на общий контакт управления, соединяются шлейфом ниже на кнопках (для примера показал коричневым и зеленым цветом);
  • остальные не используемые жилы кабеля в этом выключателе, включая РЕ-проводник, монтируем на миниатюрном двухконтактном Wago.

Этот способ позволяет удобно выполнить компактное подключение скрытой проводки даже в малом объеме подрозетника.

Одновременно здесь удобно перемонтировать назначение любой кнопки. Для этого достаточно отсоединить нижний не нужный провод с кнопки и подключить от другого светильника, а разорванную цепь соединить освободившемся Ваго.

Отличительные особенности различных моделей

Отдельные производители выпускают импульсные модули в корпусах, предназначенных не только для управления одним светильником из разных точек, но и несколькими, как показано ниже на примере продукции от Шнайдер.

Компания ABB пошла иным путем. Она стала выпускать к своим модулям дополнительный блок централизованного управления, который позволяет выполнить те же функции. Его просто устанавливают на DIN рейку рядом с основным изделием.

Схема подключения таких устройств приведена на корпусе и в сопроводительной документации. Уточняйте ее особенности у каждого производителя.

Компания Меандр производит модули РИО-2, приспособленные для работы в трех режимах:

  1. обычного импульсного;
  2. трех перекрестных переключателей;
  3. автоматического таймера.

Они могут работать с местным и централизованным управлением. Показываю схему подключения производителя двух модулей с общими функциями.

Как видите, для каждого изделия может быть разработана своя заводская схема. Ее следует уточнить.

Контакты реле.

В зависимости от конструктивных особенностей контакты промежуточных реле бывают нормально разомкнутые (замыкающие), нормально замкнутые (размыкающие) или перекидные.

3.1. Нормально разомкнутые контакты.

Пока напряжение питания не подано на катушку реле, его нормально разомкнутые контакты всегда разомкнуты. При подаче напряжения реле срабатывает и его контакты замыкаются, замыкая электрическую цепь. На рисунках ниже показана работа нормально разомкнутого контакта.

3.2. Нормально замкнутые контакты.

Нормально замкнутые контакты работают наоборот: пока реле обесточено, они всегда замкнуты. При подаче напряжения реле срабатывает и его контакты размыкаются, размыкая электрическую цепь. На рисунках показана работа нормально разомкнутого контакта.

3.3. Перекидные контакты.

У перекидных контактов при обесточенной катушке средний контакт, закрепленный на якоре, является общим и замкнут с одним из неподвижных контактами. При срабатывании реле средний контакт вместе с якорем перемещается в сторону другого неподвижного контакта и замыкается с ним, одновременно разрывая связь с первым неподвижным контактом. На рисунках ниже показана работа перекидного контакта.

Многие реле имеют не одну, а несколько контактных групп, что позволяет осуществлять управление несколькими электрическими цепями одновременно.

К контактам промежуточных реле предъявляются особые требования. Они должны иметь малое переходное сопротивление, большую износоустойчивость, малую склонность к привариванию, высокую электропроводность и большой срок службы.

В процессе работы контакты своими токоведущими поверхностями прижимаются друг к другу с определенным усилием, создаваемым возвратной пружиной. Токоведущая поверхность контакта, соприкасающаяся с токоведущей поверхностью другого контакта называется контактной поверхностью, а место перехода тока из одной контактной поверхности в другую называется электрическим контактом.

Соприкосновение двух поверхностей происходит не по всей кажущейся площади, а лишь отдельными площадками, так как даже при самой тщательной обработке контактной поверхности на ней все равно будут оставаться микроскопические бугорки и шероховатости. Поэтому общая площадь соприкосновения будет зависеть от материала, качества обработки контактных поверхностей и усилия сжатия. На рисунке показаны контактные поверхности верхнего и нижнего контактов в сильно увеличенном виде.

В месте перехода тока с одного контакта в другой возникает электрическое сопротивление, которое называется переходным сопротивлением контакта. На величину переходного сопротивления существенное влияние оказывает величина контактного нажатия, а также сопротивление окисных и сульфидных пленок, покрывающих контакты, так как они являются плохими проводниками.

В процессе длительной работы поверхности контактов изнашиваются и могут покрываться налетами копоти, окисными пленками, пылью, непроводящими частицами. Также износ контактов может быть вызван механическими, химическими и электрическими факторами.

Механический износ происходит при скольжении и ударах контактных поверхностей. Однако главной причиной разрушения контактов являются электрические разряды, возникающие при размыкании и замыкании цепей в особенности цепей постоянного тока с индуктивной нагрузкой. В момент размыкания и замыкания на контактных поверхностях происходят явления плавления, испарения и размягчения контактного материала, а также перенос металла с одного контакта на другой.

В качестве материалов для контактов реле применяют серебро, сплавы твердых и тугоплавких металлов (вольфрам, рений, молибден) и металлокерамические композиции. Наибольшее применение получило серебро, обладающее малым контактным сопротивлением, высокой электропроводностью, хорошими технологическими свойствами и относительно невысокой стоимостью.

Следует помнить, что абсолютно надежных контактов нет, поэтому для повышения их надежности применяют параллельное и последовательное включение контактов: при последовательном включении контакты могут разорвать большой ток, а параллельное включение повышает надежность замыкания электрической цепи.

Как проверить электромагнитное реле

Работоспособность электромагнитного реле зависит от катушки. Поэтому в первую очередь проверяем обмотку. Ее прозванивают мультиметром. Сопротивление обмотки может быть как 20-40 Ом, так и несколько кОм. При измерении просто выбираем подходящий диапазон. Если есть данные о том, какая величина сопротивления должна быть — сравниваем. В противном случае довольствуемся тем, что нет короткого замыкания или обрыва (сопротивление стремится к бесконечности).

Проверить электромагнитное реле можно при помощи тестера/мультиметра

Второй момент — переключаются или нет контакты и насколько хорошо прилегают контактные площадки. Проверить это немного сложнее. К выводу одного из контактов можно подключить источник питания. Например — простую батарейку. При срабатывании реле потенциал должен появиться на другом контакте или исчезнуть. Это зависит от типа проверяемой контактной группы. Контролировать наличие питания также можно при помощи мультиметра, но его надо будет перевести в соответствующий режим (контроль напряжения проще).

Если мультиметра нет

Не всегда под рукой есть мультиметр, но батарейки есть почти всегда. Давайте рассмотрим пример. Есть какое-то реле в герметичном корпусе. Если знаете или нашли его тип, можно посмотреть характеристики по названию. Если данные не нашли или нет названия реле, смотрим на корпус. Обычно тут указывается вся важная информация. Напряжение питания и коммутируемые токи/напряжения есть обязательно.

Проверка обмотки электромагнитного реле

В данном случае имеем реле, которое работает от 12 V постоянного тока. Хорошо если есть такой источник питания, тогда используем его. Если нет, собираем несколько батареек (последовательно, то есть одну за одной), чтобы суммарно получить требуемое напряжение.

При последовательном соединении батареек их напряжение суммируем

Получив источник питания нужного номинала, подключаем его к выводам катушки. Как определить где выводы катушки? Обычно они подписаны. Во всяком случае, есть обозначения  «+» и «-» для подключения источников постоянного питания и знаки для переменного  типа таких «≈».  На соответствующие контакты подаем питание. Что происходит? Если катушка реле рабочая, слышен щелчок — это притянулся якорь. При снятии напряжения он слышен снова.

Проверяем контакты

Но щелчки — это одно. Это значит, что катушка работает, но надо еще контакты проверить. Возможно они окислились, цепь замыкается, но сильно падает напряжение. Может они стерлись и контакт плохой, может, наоборот, закипели и не размыкаются. В общем, для полноценной проверки электромагнитного реле необходимо еще проверить работоспособность контактных групп.

Проще всего объяснить на примере реле с одной группой. Они обычно стоят в автомобилях. Автолюбители называют их по числу выводов: 4 контактные или 5 контактные. В обоих случаях там всего одна группа. Просто четырех контактное реле содержит нормально замкнутый или нормально разомкнутый контакт, а пятиконтактное — переключающую группу (перекидные контакты).

Электромагнитное реле 4 и 5 контактное: расположение контактов, схема подключения

Как видите, питание подается в любом случае на выводы, которые подписаны 85 и 86. А к остальным подключается нагрузка. Для проверки 4-контактного реле можно собрать простейшую связку из маленькой лампочки и батарейки нужного номинала. Концы этой связки прикрутить к выводам контактов. В 4-контактном реле это выводы 30 и 87. Что получится? Если контакт на замыкание (нормально разомкнутый), при сработке реле лампочка должна загореться. Если группа на размыкание (нормально замкнутый) должна потухнуть.

В случае с 5-контактным реле схема будет чуть сложнее. Тут потребуется две связки из лампочки и батарейки. Используйте лампы разного формата, цвета или каким-то образом их разделите. При отсутствии питания на катушке у вас должна гореть одна лампочка. При срабатывании реле она гаснет, загорается другая.

Устройство электромагнитных реле

Электромагнитное реле включается под действием электрического тока, поступающего на обмотку. На рисунке изображен принцип работы клапанного реле. Когда достигается нужная величина силы тока, в системе возникает электромагнитная сила, которая притягивает якорь (3) к поверхности ярма(1), при чем пружина (2) под действием электромагнитного поля прогибается. Вместе с якорем движется контакт (4) и давит на контакт внешней цепи (5), который при достижении определенной силы соприкасается с другим проводником (6).

После замыкания цепи срабатывает управляемый элемент (7), который производит определенное действие. Исходное положение может быть разомкнутым, как в данном примере, так и замкнутым. В последнем случае управляемый элемент выключается, при достижении определенного значения поступающего тока.

Когда силы тока становится недостаточно, чтобы удерживать якорь в нижнем положении, когда контакты 5 и 6 соприкасаются, пружина отводит якорь и размыкает цепь. Управляющее устройство перестает снабжаться электричеством и прекращает свою работу.

Большинство электромагнитных реле снабжаются не одной парой контактов, как в приведенном примере, а несколькими. В этом случае можно управлять одновременно многочисленными электрическими цепями.

Проверка при первом включении

После монтажа нового устройства или отремонтированного ЭМР (после перемотки его катушек) обязательно проведение проверки оборудования. Полный комплекс работ включает в себя следующие операции.

  • Внешний осмотр, внутренняя диагностика и обслуживание (чистка, целостность пломб, состояние уплотнений, выводов).
  • Проверка контактной группы, механизма. При обнаружении дефектов выполняется их регулировка.
  • Тестирование ЭМР на соответствие фактических технических характеристик номинальным параметрам при срабатывании реле, возврате, удержании.
  • Проверка электрической прочности изоляции.
  • Проверка времени задержки при срабатывании или возврате.
  • Тестирование системы в условиях работы при пониженном напряжении.

Импульсные реле или проходные выключатели

В длинных коридорах, на лестницах при подъеме с первого на второй этаж, в спальнях, очень удобно включать свет при входе, а выключать его совсем в другом месте (на выходе или возле кровати).

Везде в таких случаях электрики рекомендуют устанавливать проходные (маршевые) и перекрестные выключатели.

В чем же существенная разница между ними и импульсными реле? И почему все отказываются от выключателей?

Как выглядит схема подключения на проходных? Как правило, питание первых делом подводится к ответвительной коробке под потолком, а далее от нее к самим выключателям. Для монтажа применяется трехжильный кабель ВВГнг-Ls 3*1.5мм2.

Чем больше переключателей вы будете ставить, тем больше проводов вам потребуется.

При монтаже проходных двухклавишников, у вас уже появляется 6 контактов, к каждому из которых нужно подвести провода.

А попробуйте такой пучок грамотно соединить в распредкоробке? Не всякий электрик сразу разберется с такой схемой подключения.

При этом каждый из выключателей пропускает непосредственно через себя весь ток нагрузки. А значит при коммутациях или коротком замыкании, вполне возможно выгорание контактов.

Еще одной особенностью проходных является отсутствие фиксированного положения клавиши. Вы не можете по ее состоянию понять, включен выключатель или отключен, как это делается на одноклавишнике.

Это будет напрямую зависеть от других “собратьев”, собранных в одну цепочку. Что не всегда удобно и требует привыкания.

Почему только кнопочные?

При использовании импульсных реле, применяются уже другие виды выключателей – кнопочные, звонковые или нажимного типа.

Обратите внимание, простые одноклавишники или двухклавишники здесь не подойдут

За редким исключением, например для реле Меандр РИО-2. Но об этом чуть позже.

Исходя из этого факта, на импульсные реле нельзя подавать сигнал слишком длительное время, иначе у него сгорит катушка. Некоторые производители предупреждают, что время непрерывной подачи сигнала на их моделях должно составлять не более 1 минуты.

А некоторые детки очень любят поиграться с такими кнопочками, после чего они и выходят из строя.

Кнопочные выключатели внешне напоминают обычные, только внутри их конструкции имеется возвратная пружинка, которая после каждого нажатия возвращает клавишу и контакт в исходное положение.

Есть и двухклавишные кнопки в одном корпусе.

Они пригодятся, когда вы захотите подключить от одного реле общее освещение на кухне и одновременно подсветку рабочей зоны столешницы.

Либо в зале – люстру и подсветку по периметру, плюс отдельно бра.

Многие вместо специальных выключателей используют подпружиненные кнопки для дверных звонков.

История создания

Первенство создания реле спорно. Некоторые утверждают, что впервые это устройство было сконструировано в 1830—1832 гг. русским ученым Шиллингом П.Л. и являлось основным элементом вызывающего механизма в разработанном им же варианте телеграфа.

Другие научные историки приписывают первенство изобретения известному физику Дж. Генри, который в 1835 г. разработал контактное реле во время усовершенствования созданного им в 1831 году телеграфного аппарата. Первый соленоид работал по принципу электромагнитной индукции и был некоммутационным устройством.

Первое реле Дж. Генри

Реле, в качестве самостоятельного устройства, впервые упоминается в патенте на телеграф, выданном Самуэлю Морозе.

Первое реле Морзе

Как видим, первой сферой применения этого коммутационного устройства был телеграф и только позднее с развитием техники он стал применяться в электрическом и электронном оборудовании.

Конструктивные особенности

В основе твердотельного реле лежит электронная плата, в состав которой входит три главных элемента — узлы управления и развязки, а также силовой ключ. В роли силовых элементов применяются такие детали:

  • Для постоянного I — транзисторы полевого типа, простые транзисторы, модульные элементы класса IGBT, а также MOSFET-транзисторы.
  • Для переменного I — сборки на базе тиристоров, а также симисторы.

Развязка цепи обеспечивается оптронами — изделиями, состоящими из излучающего и принимающего свет устройства. Между ними установлен диэлектрик, имеющий прозрачную структуру.

Управляющий узел выполнен в виде стабилизирующей схемы, обеспечивающей оптимальные уровни тока и напряжения для излучающего свет элемента. Напряжение на входе схемы должно быть от 70 до 280 Вольт.

Что касается напряжения нагрузки, его величина — до 480 Вольт. Расположение электроприбора (до или после ТТР) не имеет значения.

Как правило, устройство монтируется после нагрузки с последующим подключением к «земле». При таком варианте схемы удается защитить внутренние элементы от протекания тока КЗ (он потечет через заземляющий провод).

Поделитесь в социальных сетях:FacebookTwitterВКонтакте
Напишите комментарий