Методика проведения и оформление результатов проверки заземления

Периодичность испытаний электроустановок

Согласно п.2.12.17 ПТЭЭП (правила технической эксплуатации электроустановок потребителей) проверка состояния стационарного оборудования и электропроводки аварийного и рабочего освещения, испытание и измерение сопротивления изоляции проводов, кабелей и заземляющих устройств должны проводиться при вводе сети в эксплуатацию, а в дальнейшем по графику, утвержденному ответственным за электрохозяйство, но не реже 1 раза в 3 года.

Нормы испытаний электрооборудования и аппаратов электроустановок потребителей

Замеры выполняются для вновь вводимого в эксплуатацию оборудования. К, Т, М — производятся в сроки, устанавливаемые системой планово-предупредительного ремонта (ППР).

Т — текущий, выполняется 1 раз в год; К — капитальный, рекомендуется выполнять 1 раз в 5 лет; М — межсезонный, выполняется при необходимости.

Наименование испытания Вид испытания Периодичность проверки Примечание
1. Измерение сопротивления изоляции электрооборудования, силовых кабельных линий, напряжением до 1000В
1. Силовые кабельные линии А) в земле К, Т, М По плану ППР ПТЭЭП прил. 3 табл.6.2
Б) воздушные с неизолированным проводом К По плану ППР ПТЭЭП прил. 3 табл.7.8.1
2. Электропроводка, в том числе осветительные сети А) в особо опасных помещениях К, Т, М 1 раз в год ПТЭЭП прил. 3.1 табл.37
Б) остальные К, Т ,М не менее 1 раза в 3 года ПТЭЭП прил. 3.1 табл.37
3. Краны и лифты К, Т, М 1 раз в год ПТЭЭП прил. 3.1 табл.37
4. Стационарные электроплиты К, Т, М 1 раз в год ПТЭЭП прил. 3.1 табл.37
5. Обмотки двигателей К, Т По плану ППР ПТЭЭП прил. 3 табл.23.1
6. Сборные и соединительные шины К По плану ППР ПТЭЭП прил. 3 табл.8.1
II. Измерение сопротивления заземляющих устройств
1. Опор воздушных линий К, Т, М не менее 1 раза в 6 лет ПТЭЭП прил. 3 табл.26.4
2. Остальные К, Т, М по плану ППР ПТЭЭП прил. 3 табл.26.4
III. Измерение удельного сопротивления грунта
При необходимости
IV. Проверка цепи «фаза-нуль»
Электроустановки до 1000В с глухим заземлением нейтрали К, Т, М по плану ППР ПТЭЭП прил. 3 табл.28.4
V. Проверка цепи между заземлителями и заземляюшими элементами
1. Краны К, М 1 раз в год ПТЭЭП прил. 3 табл.26.1
2. Остальные К, Т, М по плану ППР ПТЭЭП прил. 3 табл.28.5
VI. Проверка действия расцепителей автоматических выключателей
Электрические сети до 1000В К по плану ППР ПТЭЭП прил. 3 табл.28.6
VII. Проверка устройств защитного отключения (УЗО)
М 1 раз в квартал, кнопкой «тест» ПТЭЭП прил. 3 табл.28.7

Примечание: Согласно «Единой системе планово-предупредительных ремонтов» текущий ремонт электроустановок и электрооборудования должен проводится не менее 1 раза в год.

Проведение проверок состояния заземления в различных условиях

Периодичность замера сопротивления контура заземления на территории, отличающейся повышенной агрессивностью почвы также регламентируется действующими нормами, однако собственник вправе принять решение о более частом проведении подобных исследований, чтобы не подвергать опасности людей и свою собственность. При проверках на территориях с агрессивными грунтами обязательно следует проводить выборочное вскрытие почвы, чтобы можно было максимально точно определить уровень коррозии на наиболее подверженных такому влиянию элементах заземления. В случаях, когда часть заземления разрушено под воздействием коррозии на 50% или более, обязательно следует замена данного элемента. Любые результаты исследования и принятые решения по устранению неисправностей должны заноситься в специальные акты.

Чтобы определить общее техническое состояние системы заземления, специалисты должны провести ряд работ и исследований, включающих в себя определение уровня сопротивления заземления, проверка уровня напряжения прикосновения, проверка токов на электрической установке, проверка состояния и работоспособности предохранителей и защитных устройств, определение точных параметров сопротивления почвы.

Любые измерения по уровню сопротивления заземления должны осуществляться в периоды, когда грунт обладает наивысшими характеристиками заземления. В большинстве случаев – в зимнее или летнее время. Зимой сопротивление почвы значительно возрастает из-за промерзания грунта, а летом из-за высыхания жидкостей в земле.

Ниже вы можете воспользоваться онлайн-калькулятором для расчёта стоимости услуг электролаборатории.

Формула расчета

Формула расчета сопротивления заземления одиночного вертикального заземлителя:

где: ρ — сопротивление грунта на единицу длины (Ом×м) L — протяженность заземлителя (в метрах) d — ширина заземлителя (в метрах) T — расстояние от поверхности земли до середины заземлителя (в метрах)

Для электролитического заземления:

Формула расчета сопротивления заземления одиночного горизонтального электрода с добавлением поправочного коэффициента:

где:

ρ — сопротивление грунта на единицу длины (Ом×м); L — протяженность заземлителя (в метрах); d — ширина заземлителя (в метрах); T — расстояние от поверхности земли до середины заземлителя (в метрах); С — относительное содержание электролита в окружающем грунте.

Коэффициент C варьируется от 0.5 до 0.05. Со временем он уменьшается, так как электролит проникает в грунт на больший объем, при это повышая свою концентрацию. Как правило, он составляет 0.125 через 6 месяцев выщелачивания солей электрода в плотном грунте и через 0.5–1 месяц выщелачивания солей электрода в рыхлом грунте. Процесс можно ускорить путем добавления воды в электрод при монтаже.

Расчетное удельное электрическое сопротивление грунта (Ом×м) — параметр, определяющий собой уровень «электропроводности» земли как проводника, то есть как хорошо будет растекаться в такой среде электрический ток от заземлителя.

Это измеряемая величина, зависящая от состава грунта, размеров и плотности прилегания друг к другу его частиц, влажности и температуры, концентрации в нем растворимых химических веществ (солей, кислотных и щелочных остатков).

Измеритель сопротивления заземления SEW 2705 ER

Большим спросом пользуется у профессиональных электриков, и имеет малые габариты и удобен в применении, напоминает обычный мультиметр со стрелочной шкалой.

Основные особенности и технические характеристики

  • По двухпроводной схеме измеряет сопротивление заземления до 1000Ом;
  • Более точные измерения делаются по трехпроводной схеме;
  • Шаговое напряжение измеряется до 30В;
  • Тестовый ток в пределах 2мА, что позволяет производить измерения, на работающей электроустановке, без отключения электропитания;
  • Шкала стрелочная разработчики сознательно отказались от цифрового варианта с целью повышения точности в данном интервале измерений.
  • Индикатор уровня зарядки батарей питания.

Пример различных схем для измерения:

А – измерение пошагового напряжения;

В – Точные измерения в трехпроводном режиме;

С – Грубые измерения в двухпроводном режиме.

Существует много методик и схем для измерения сопротивления заземления:

  • Двухпроводная схема;
  • Трехпроводная;
  • Четырехпроводная;
  • Метод пробного электрода;
  • Компенсационный способ и другие.

Все эти методы имеют свои преимущества и недостатки в конкретных случаях с соответствующими приборами, эта тема требует детального рассмотрения в отдельной статье.

Не учитываются требования к расстоянию между измерительными штырями и контуром заземления, обычно это 10 м;
Измеряя сопротивление контура, забывают измерить сопротивление линии с заземленной нейтралью

Это очень важно, особенно когда присутствуют элементы с повышенной коррозией;
Для точности и надежности. Проведите 2-3 измерения с разными местами установки измерительных штырей, особенно сделайте измерения, где большая вероятность разрушения элементов контура от коррозии.

Периодичность измерений

Проводить визуальный осмотр, измерения, а также при необходимости частичное раскапывание грунта нужно согласно графику, который установлен на предприятии, но не реже чем один раз в 12 лет. Получается, что, когда производить замеры заземления – решать вам. Если вы живете в частном доме, то вся ответственность лежит на вас, но не рекомендуется пренебрегать проверкой и замерами сопротивления, так как от этого напрямую зависит ваша безопасность, при пользовании электрооборудованием.

При проведении работ необходимо понимать, что в сухую летнюю погоду можно добиться наиболее реальных результатов измерений, так как грунт сухой и приборы дадут наиболее правдивые значения сопротивлений заземления. Напротив, если замеры будут проведены осенью либо весной в сырую, влажную погоду, то результаты будут несколько искажены, так как мокрый грунт сильно влияет на растекаемость тока, что, в свою очередь, дает большую проводимость.

Если вы хотите, чтобы измерения защитного и рабочего заземления проводили специалисты, то необходимо обратиться в специальную электротехническую лабораторию. По окончании работы вам будет выдан протокол измерения сопротивления заземления. В нем отображается место проведения работ, назначение заземлителя, сезонный поправочный коэффициент, а также на каком расстоянии друг от друга находятся электроды. Образец протокола предоставлен ниже:

Напоследок рекомендуем просмотреть видео, в котором показывается как измеряют сопротивление заземления опоры ВЛ:

Вот мы и рассмотрели существующие методики измерения сопротивления заземления в домашних условиях. Если вы не обладаете соответствующими навыками рекомендуем воспользоваться услугами специалистов, которые все сделают быстро и качественно!

Также рекомендуем прочитать:

Почему заземляющее устройство становится неисправным?

При находящемся в работоспособном состоянии контуре ток по РЕ-проводнику переходит на токопроводящие электроды, находящиеся в контакте с почвой, а по ним постепенно переходит на потенциал земли. Весь поток делится на несколько составных частей.

При продолжительном пребывании в агрессивной среде грунта металлические поверхности тоководов окисляются, на них образуется окисная пленка. По мере развития коррозионных процессов прохождение тока ухудшается, электрическое сопротивление конструкции повышается. Возникающая на металлических элементах ржавчина, как правило, носит общий характер, хотя, местами можно увидеть ярко выраженные следы глубокой коррозии. Этот факт объясняется тем, что находящиеся в почве постоянно химически активные растворы щелочей, солей и кислот распределены неравномерно.

Частицы разрушенного коррозией металла отходят от тела проводника, ухудшая либо вовсе прекращая местный электрический контакт. Таких точек со временем возникает все больше, на фоне постепенно увеличивающегося сопротивления контура заземляющее устройство постепенно снижает проводимость и неспособно отвести в почву опасный потенциал. Своевременное выполнение замеров сопротивления заземления позволяет определить момент наступления критического состояния контура.

Какая периодичность измерений

Перед тем как замерить сопротивление заземления тем или иным способом – важно учесть требования ПУЭ в части периодичности проведения этих испытаний. Согласно основным положениям этого документа они могут проводиться в следующих формах:

  • плановые обследования;
  • внеочередные проверки;
  • пусковые испытания.

Периодичность каждой из этих разновидностей проверок определяется теми целями, которые они перед собой ставят. Периодичность проверок сопротивления изоляции станционного оборудования обычно согласуется с обследованием самого ЗК. Рассмотрим различные их виды более подробно.

Плановые проверки

Сроки проведения плановых мероприятий оговариваются инструкцией РД-34.22.121-87, а также требованиями ПУЭ. Из этих документов можно узнать, какова периодичность визуального осмотра видимых частей устройств заземления, которая согласно им организуется не реже одного раза в полгода. Помимо этого из этих же нормативов следует, что не реже чем раз в 12 лет должны проводиться обследования конструкции со вскрытием грунта вокруг нее. Измерение сопротивления контуров заземления согласно тем же документам должно проводиться не реже раза в 6 лет.

Ответственными за проведение таких проверок являются лица, уполномоченные на это соответствующими органами. Владелец частного дома должен заранее оформить заявку на их проведение с последующей оплатой. По завершении испытаний он обязан предоставить в местную энергетическую службу протокол измерений сопротивлений контактов между элементами ЗК.

Внеочередные

Внеочередные измерения параметров контура должны проводиться в следующих внештатных ситуациях:

  • После внесения в конструкцию изменений, не предусмотренных проектом, но влияющих на сопротивление растеканию току (измерение заземления в частном доме должно проводиться при переносе его на другое место).
  • После аварийного разрушения и последующего восстановления ЗК.
  • По завершении ремонтных работ.

Периодичность их проведения по понятным причинам не регламентируются.

Пусковые или вводные

Пусковые или вводные проверки заземления и измерения сопротивления организуются сразу же по окончании монтажа защитного контура (то есть накануне сдачи его представителю местной энергетической службы). Для этого потребуется пригласить специалиста от электрической лаборатории или другой организации, имеющей лицензию на право проведения таких испытаний.

По итогам проверки оформляется акт приемки, являющийся основанием для последующего пуска устройства в эксплуатацию и подтверждением того, что все питающие линии в частных домах заземлены.

Условия проведения испытаний

При организации мероприятий по проверке заземления важно обратить внимание на те условия, в которых предполагается их проведение. Они должны учитываться еще на стадии подготовки испытаний, а по их окончании вноситься в особый журнал. Согласно требованиям действующих нормативов (ПУЭ, в частности) для этого желательно выбирать летнюю пору с солнечной сухой погодой, позволяющей получить наиболее близкие к реальности результаты

Это объясняется тем, что в такое время грунт поддерживается в достаточно сухом состоянии, соответствующем реальным условиям эксплуатации защитного сооружения

Согласно требованиям действующих нормативов (ПУЭ, в частности) для этого желательно выбирать летнюю пору с солнечной сухой погодой, позволяющей получить наиболее близкие к реальности результаты. Это объясняется тем, что в такое время грунт поддерживается в достаточно сухом состоянии, соответствующем реальным условиям эксплуатации защитного сооружения.

При проведении контрольных замеров допустимых сопротивлений в осеннюю сырую погоду, например, полученные результаты будут в значительной степени искажены. Это объясняется тем, что пропитанный влагой грунт существенно увеличивает показатель проводимости почвы. Для того чтобы избежать всех этих сложностей и получить значение близкое к реальной величине – проще всего воспользоваться услугами профессионалов. Для этого необходимо обратиться в специальную электротехническую лабораторию, имеющую лицензию на проведение соответствующих работ.

Специалисты по прибытию на место выявят все факторы и организуют испытания защитного оборудования в соответствие с требованиями действующих нормативов. По завершении всего испытательного цикла ими же будет оформлен протокол измерения сопротивления заземления образец которого представлен ниже.

Протокол проверки сопротивлений заземлителей

Для чего проверяется заземление

Проверка состояния заземления является важным мероприятием, направленным на защиту людей от действия электрического тока. Для решения задачи, как проверить заземление в частном доме используется специальное оборудование. Полученные результаты дают возможность установить, в каком состоянии находится заземление, соответствует ли установленным нормам и способно ли выполнять свои функции. Обычно такие измерения проводятся квалифицированными специалистами из организации, обслуживающей домашнюю сеть.

Периодические проверки заземления должны обязательно проводиться, несмотря на то что вся электрика в доме монтировалась профессиональными электротехниками. Нередки случаи, когда неправильное соединение контура вызывает его преждевременный износ. В связи с этим рекомендуется в установленные сроки делать измерение и проверять, в каком состоянии находится грунт и размещенные в нем электроды, а также заземляющие проводники, шины и элементы металлосвязей.

Данная процедура, определяющая, есть ли заземление, проводится в жилых домах не реже 1 раза в 3 года, а на объектах промышленного производства – ежегодно.

В процессе замеров тестером определяется сопротивление контура, значение которого должно соответствовать установленным нормам. Если показатели получились выше нормативных, их можно снизить. Для этого нужно просто увеличить площадь взаимодействия путем добавления электродов или поднимается величина общей проводимости грунта, с помощью увеличения концентрации солей, содержащихся в почве.

Следует учитывать, что устройство обычного заземления может лишь понизить напряжение, поступающее на корпус оборудования. Сделать защиту более надежной поможет устройство защитного отключения – УЗО, устанавливаемое в одной связке с заземлением. Любые защитные средства проектируются и выбираются индивидуально, в соответствии с условиями эксплуатации. Выбор осуществляется с учетом влажности, структуры грунта и других факторов.

Необходимо помнить и о том, что многие виды современных электрических устройств оборудованы встроенным УЗО, срабатывающим лишь при включении в розетку, имеющую заземление. Поэтому их нормальная работа полностью зависит от правильного подключения защиты и дальнейших проверок ее работоспособности.

Измерение сопротивления контура защитного заземления

Защитным заземлением называется преднамеренное электрическое соединение с землей или эквивалентом металлических нетоковедущих частей, которые могут оказаться под напряжением вследствие замыкания на корпус.

Задача защитного заземления – устранение опасности поражения током в случае прикосновения к корпусу и другим нетоковедущим металлическим частям электроустановки, оказавшейся под напряжением.

Принцип действия заземления – снижение напряжения между корпусом, оказавшимся под напряжением, и землей до безопасного значения.

Заземляющие устройства после монтажных работ и периодически не реже один раз в год испытываются по программе Правил устройства электроустановок. По программе испытания производится измерение сопротивления заземляющего устройства.

Сопротивление заземляющего устройства, к которому присоединены нейтрали генераторов или трансформаторов или выводов источников однофазного тока, в любое время года должно быть не более 2, 4, 8 Ом соответственно при линейных напряжениях 660, 380, и 220 В источника трехфазного тока или 380, 220 и 127 В источника однофазного тока.

Измерения сопротивления контура заземляющего устройства производятся измерителем заземления М416 или Ф4103-М1.

Описание измерителя заземления М416

Измерители заземления М416 предназначены для измерения сопротивления заземляющих устройств, активных сопротивлений и могут быть использованы для определения удельного сопротивления грунта (?). Диапазон измерения прибора от 0,1 до 1000 Ом и имеет четыре диапазона измерения: 0,1 … 10 Ом, 0,5 … 50 Ом, 2,0 … 200 Ом, 100 … 1000 Ом. Источником питания служат три соединенные последовательно сухие гальванические элемента напряжением по 1,5 В.

Измеритель сопротивления заземления Ф4103-М1

Измеритель сопротивления заземления Ф4103-М1 предназначен для измерения сопротивления заземляющих устройств, удельного сопротивления грунтов и активных сопротивлений как при наличии помех, так и без них с диапазоном измерений от 0-0,3 Ом до 0-15 Ком (10 диапазонов).

Измеритель Ф4103 является безопасным.

При работе с измерителем в сетях с напряжением выше 36 В необходимо выполнять требования безопасности, установленные для таких сетей. Класс точности измерительного прибора Ф4103 – 2,5 и 4 (в зависимости от диапазона измерения).

Питание – элемент (R20, RL20) 9 шт. Частота оперативного тока – 265-310 Гц. Время установления рабочего режима – не более 10 секунд. Время установления показаний в положении “ИЗМ I” – не более 6 секунд, в положении “ИЗМII” – не более 30 секунд. Продолжительность непрерывной работы не ограничена. Норма средней наработки на отказ – 7250 часов. Средний срок службы – 10 лет Условия эксплуатации – от минус 25 ° С до плюс 55 ° С. Габаритные размеры, мм – 305х125х155. Масса, кг , не более – 2,2.

Перед проведением измерений измерителем Ф4103 необходимо, по возможности, уменьшить количество факторов, вызывающих дополнительную погрешность, например, устанавливать измеритель практически горизонтально, вдали от мощных электрических полей, использовать источники питания 12±0,25В, индуктивную составляющую учитывать только для контуров, сопротивление которых меньше 0,5 Ом, определять наличие помех и так далее. Помехи переменного тока выявляются по качаниям стрелки при вращении ручки ПДСТ в режиме “ИЗМI”. Помехи импульсного (скачкообразного) характера и высокочастотные радиопомехи выявляются по постоянным непериодическим колебаниям стрелки.

Порядок проведения измерения сопротивления контура защитного заземления

1. Установить элементы питания в измеритель заземления.

2. Установить переключатель в положение «Контроль 5 ?», нажать кнопку и вращением ручки «реохорд» добиться установки стрелки индикатора в нулевую отметку шкалы.

3. Подключить соединительные провода к прибору, как показано на рисунке 1, если измерения производятся прибором М416 или рисунке 2, если измерения производятся прибором Ф4103-М1.

4. Углубить дополнительные вспомогательные электроды (заземлитель и зонд ) по схеме рис. 1 и 2 на глубину 0,5 м и подключить к ним соединительные провода.

5. Переключатель установить в положение «Х1».

6. Нажать кнопку и вращая ручку «реохорда» приблизить стрелку индикатора к нулю.

7. Результат измерения умножить на множитель.

Подключение прибора М416 для измерения сопротивления контура заземления

{SOURCE}

Факторы учета сопротивления

Система заземления состоит из вкопанного в грунт металлического заземлителя и шины, обеспечивающей электрический контакт заземлителя и заземляемого элемента.

Сопротивление системы зависит от таких факторов:

  1. сопротивление материалов шины и электродов заземлителя. Используют сталь или медь, потому данная составляющая по определению низка и особого внимания не требует;
  2. сопротивление зоны контакта шины с заземлителем. Соединение осуществляют болтами или сваркой. Чтобы поддержать сопротивление на низком уровне, предотвращают коррозию металла. К примеру, сварные швы обрабатывают специальным лаком;
  3. удельное сопротивление грунта. В первую очередь зависит от влажности и наличия в грунте солей. Сопротивление замороженного грунта значительно возрастает, поэтому заземлитель погружают как минимум ниже глубины промерзания. Если это невозможно (каменистый грунт, вечная мерзлота), применяют горизонтальные электроды в виде перфорированной трубы, заполняемой солью. В трубу заливают воду, она растворяет соль и грунт вокруг трубы пропитывается электролитом, что понижает его температуру замерзания и увеличивает проводимость. Наибольшим сопротивлением обладает поверхностный грунт. С ростом глубины сопротивление сильно падает, потому целесообразно применять модульные наращиваемые электроды, погружаемые на глубины до 50-ти м. Зависимость сопротивления от глубины — нелинейная, но приблизительно принимают, что с удвоением глубины, сопротивление увеличивается на 40%;
  4. взаимное расположение электродов. При близком расположении электроды перекрывают друг друга, отчего эффективность заземлителя падает. Оптимальное расстояние между электродами — 2,2 их длины;
  5. сопротивление зоны контакта электродов заземлителя и грунта либо среды-посредника.

Заземление в частном доме

Снижения последнего параметра добиваются применением таких приемов:

  • увеличивают площадь контакта за счет применения большего числа электродов либо увеличения их длины;
  • не применяют окрашивание и прочие диэлектрические покрытия;
  • предотвращают коррозию за счет нанесения на стальной электрод медного или цинкового покрытия.

Трехполюсная система измерений

Для замеров сопротивления системы защиты от ударов молнии метод считается базовым. Работы проводятся следующим образом:

  1. Заземлитель присоединяют к измерительному гнезду оборудования.
  2. Токовый щуп направляют в грунт. Измерение проводят на расстоянии свыше 40 метров от защитной системы. Щуп специальным проводником присоединяют к гнезду прибора под названием «H».
  3. Потенциальный щуп устанавливают в грунт на расстоянии более 20 метров от исследуемой защитной системы. Далее щуп соединяют с измерительным гнездом, обозначенным буквой S.
  4. Щупы и заземлитель выстраивают в единую линию.

Поворотный переключатель ставят в позицию RE 3p. Далее начинают замеры после нажатия на клавишу START.

После окончания процедуры на мониторе появляется показатель сопротивления заземлителя (RE) и данные, полученные со щупов. Дистанцию между потенциальным щупом и защитной системой сокращают до одного метра. После делают еще один замер. Если результаты разнятся более чем на 3 %, токовый щуп отдаляют на большее расстояние. Измерение осуществляют повторно — вплоть до получения приемлемого соотношения полученных данных.

Измерения по трехполюсной схеме предполагают учет нескольких нюансов. Например, при повышенном сопротивлении щупов данный показатель для заземления устанавливается с определенной погрешностью. То же следует сказать и о замерах сопротивления заземлительного контура, находящегося в свободном контакте с грунтом. Причина имеющихся погрешностей заключается в чрезмерно высоком соотношении сопротивлений щупов и заземлителя.

Чтобы улучшить точность полученных данных, необходимо добиться более качественного контакта щупов с землей. С этой целью щупы переставляют в другое, более влажное место. Альтернатива такому решению — искусственное увлажнение почвы перед выполнением проверки. Кроме того, нужно осмотреть измерительные проводники, чтобы убедиться в целостности изоляционного материала, отсутствии следов ржавчины, проверить контакты с клеммами щупов.

Обратите внимание! Результаты всех дополнительных процедур записываются в итоговый протокол. Соблюдение всех рекомендованных условий позволяет получить достаточно точные результаты (с учетом общей погрешности измерений). Следует иметь в виду, что корректная оценка влияния сопротивления щупов требует дополнительных вычислений

Следует иметь в виду, что корректная оценка влияния сопротивления щупов требует дополнительных вычислений

Соблюдение всех рекомендованных условий позволяет получить достаточно точные результаты (с учетом общей погрешности измерений). Следует иметь в виду, что корректная оценка влияния сопротивления щупов требует дополнительных вычислений.

Зачем нужен паспорт заземляющего устройства

Документом, в который вносятся все параметры заземляющего контура, является специальный паспорт. Этот документ есть как у частных домовладельцев, так и у предприятий и госучреждений.

В паспорт записываются следующие данные по состоянию контура заземляющего устройства:

  • периодичность ремонтных операций дымовых труб или переносного электрического оборудования
  • перечень дефектов, которые были обнаружены при внешнем осмотре изоляции оборудования
  • информация, касающаяся напряжения и величины сопротивления
  • степень коррозии
  • когда заземляющее устройство было сдано в эксплуатацию
  • сроки планируемой проверки

Выводом в паспорте является заключение эксперта, который подтверждает результаты осмотров и выполненных проверок относительно пригодности контура заземления к использованию. Здесь могут быть отмечены замечания и рекомендации, направленные на устранение дефектов или ошибок при подключении заземления к переносному оборудованию, дымовым трубам. Все записи в паспорте позволяют узнать состояние контура заземления на текущий момент.

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий