Люминесцентная лампа: принцип действия, достоинства и недостатки
— Принцип действия люминесцентных ламп
— Достоинства и недостатки люминесцентных ламп
Принцип действия Принцип действия люминесцентной лампы низкого давления основан на дуговом разряде в парах ртути низкого давления. Получающееся при этом ультрафиолетовое излучение преобразуется в видимое в слое люминофора, покрывающего внутренние стенки лампы. Лампы представляют собой длинные стеклянные трубки, в торцы которых впаяны ножки, несущие по два электрода, между которыми находится катод в виде спирали. В трубку лампы введены пары ртути и инертный газ, главным образом аргон. Назначением инертных газов является обеспечение надежного загорания лампы и уменьшение распыления катодов. На внутреннюю поверхность трубки нанесен слой люминофора. Если к электродам, вставленным в концы стеклянной трубки, которая заполнена разряженным инертным газом или парами металла, приложить напряжение из расчета не менее 500. 2000 В на 1 м длины трубки, то свободные электроны в полости трубки начинают лететь в сторону электрода с положительным зарядом. Когда к электродам приложено переменное напряжение, направление движения электронов изменяется с частотой приложенного напряжения.В своем движении электроны встречаются с нейтральными атомами газа — заполнителя полости трубки — и ионизируют их, выбивая электроны с верхней орбиты в пространство. Возбужденные таким образом атомы, вновь сталкиваясь с электронами, снова превращаются в нейтральные атомы. Это обратное превращение сопровождается излучением кванта световой энергии. Каждому инертному газу и парам металла соответствует свой спектральный состав излучаемого света: . трубки с гелием светятся светло-желтым или бледно-розовым светом; • трубки с неоном — красным светом; трубки с аргоном — голубым светом. Смешивая инертные газы или нанося люминофоры на поверхность разрядной трубки, получают различные оттенки свечения. Люминесцентные лампы дневного и белого света выполняют в виде прямой или дугообразной трубки из обычного стекла, не пропускающего короткие ультрафиолетовые лучи. Электроды изготавливают из вольфрамовой проволоки. Трубку заполняют смесью аргона и паров ртути. Внутри поверхность трубки покрыта люминофором — специальным составом, который светится под воздействием ультрафиолетовых лучей, возникающих при электрическом разряде в парах ртути. Аргон способствует надежному горению разряда в трубке.
Достоинства люминесцентных ламп. Основным преимуществом люминесцентных ламп по сравнению с лампами накаливания являются: . более высокий коэффициент полезного действия (15. 20%), высокая световая отдача и в несколько раз больший срок службы. Таким образом, при затрате той же мощности достигается значительно большая освещенность по сравнению с лампами накаливания; . правильный выбор ламп по цветности может создать освещение, близкое к естественному; о благоприятные спектры излучения, обеспечивающие высокое качество цветопередачи; . люминесцентные лампы значительно менее чувствительны к повышениям напряжения, поэтому их экономично применять на лестничных клетках и в помещениях, освещаемых ночью, когда в сети напряжение повышено. Лампы накаливания (очень чувствительные к повышениям напряжения) быстро перегорают; . малая себестоимость; . низкая яркость поверхности и ее низкая температура (до 50 °С) Недостатки люминесцентных ламп Основным недостатками люминесцентных ламп по сравнению с лампами накаливания являются: « сложность схемы включения; • ограниченная единичная мощность (до 150 Вт); • зависимость от температуры окружающей среды (при снижении температуры лампы могут гаснуть или не зажигаться); » значительное снижение светового потока к концу срока службы; • вредные для зрения пульсации светового потока; » акустические помехи и повышенная шумность работы; в при снижении напряжения сети более чем на 10% от номинального значения лампа не зажигается; » дополнительные потери энергии в пускорегулирующеи аппаратуре, достигающие 25. 35% мощности ламп; • наличие радиопомех; • лампы содержат вредные для здоровья вещества, поэтому вышедшие из строя газоразрядные лампы требуют тщательной утилизации.
Виды
В быту применяются для освещения несколько видов ЭСЛ:
- Галогенные – экономия электричества до 50%.
- Люминесцентные – экономия до 80%.
- Светодиодные – экономия 80-90%.
Сейчас в потреблении большее количество люминесцентных лампочек. Они производятся таких видов: трубчатые, кольцевидные, компактные (разновидность трубчатых, только размер значительно меньше). Компактные лампочки по сравнению с накаливания дают возможность экономить до 80% электроэнергии. К тому же срок эксплуатации превышает до 15 раз. Положительной чертой является отсутствие большого количества выделяемого тепла. Поэтому не произойдет перегрева при использовании в осветительных приборах. Оттенок излучаемого света выбирается индивидуально. Бывает он теплых и холодных оттенков. Отрицательной стороной является содержание ртути, реагирование на частоту включения, при пониженных температурах уменьшается подача света, проблема с утилизацией.
Более усовершенствованы галогенные энергосберегающие лампочки. В них включены элементы галогена, что позволяет поддерживать яркость на протяжении всего периода эксплуатации. Свет, излучаемый лампочкой, подобен дневному освещению, поэтому все оттенки вещей передаются в естественном виде. Срок службы данного вида всего лишь до трех раз превосходит обычную лампу накаливания. Экономия потребления энергии до 50 процентов.
Самыми усовершенствованными считаются светодиодные лампочки. У них высокий КПД и срок эксплуатации до 80 тыс.часов. Они излучают голубые, зеленые, красные, желтые, белые оттенки. Поэтому широко применяются в декорировании, архитектурном дизайне. Также этот вид не содержит ртути, что делает его экологически безопасным. Нагревание поверхности отсутствует, что соответствует противопожарным нормам. Недостатком считается лишь высокая стоимость в сравнении с другими видами.
Современные энергосберегающие лампы, относительно размерам цоколя, имеют два вида:
- С обычным патроном (Е27);
- С малым патроном (Е14).
Форма ламп имеет спиральный и у-образный вид.
От формы лампочки не меняется качество подачи света! Но спиральные энергосберегающие лампы дороже из-за сложности в изготовлении.
Цветность и состав излучения ламп
Характеристики передачи цвета показывают качество отображения в сравнении с естественным типом освещения. Высокая четкость передачи цвета присутствует в галогенных приборах и обозначается кодом 100.
Различаются оттенки светового излучения приборов, изменяющие цветовые характеристики предметов.
Согласно нормативам ГОСТ 6825-91, люминесцентные устройства имеют следующие типы оттенков излучения:
- дневной (Д);
- белоснежный (Б);
- естественный оттенок белого (Е);
- белый с теплым тоном (ТБ);
- белый с холодным тоном (ХБ);
- ультрафиолетовый (УФ);
- холодное естественное свечение (ЛХЕ) и т.д.
Добавление знака Ц в указании цветности свидетельствует об использовании состава люминофора с усовершенствованной передачей цвета.
Отдельно обозначаются цвета в осветительных устройствах со специальным назначением. Лампы с ультрафиолетовым излучением фиксируются кодом ЛУФ, приборы рефлекторные синего света — ЛСР и т.д.
Схема и устройство энергосберегающей лампы
Успех энергосберегающих ламп на рынке объясняется их уникальным строением, благодаря которому они значительно превосходят по эффективности своих предшественников. Некоторые элементы и электронные узлы отличаются в зависимости от производителя, мощности и назначения, однако, в целом они все имеют аналогичную принципиальную схемотехнику.
Принципы работы и устройства
Устройство ЭСЛ
Люминесцентные лампы представляют собой стеклянную полую колбу, которая наполнена ртутными парами. В момент включения в них создается электрический дуговой разряд между двумя электродами, устроенный пусковым конденсатором. Он приводит к возникновению ультрафиолетового излучения, невидимого для человеческого глаза.
Для его преобразования в видимый свет на стенки колбы наносится люминофор (чаще всего используют соединения галофосфат кальция или ортофосфат кальция-цинка). При прохождении ультрафиолета через люминофор образуется яркий свет. Его светоотдача значительно превосходит свечение вольфрама в лампах накаливания при аналогичном энергопотреблении.
Цвет зависит от состава люминофора.
В отличие от обычной лампы, энергосберегающие люминесцентные модели нельзя подсоединить напрямую к источнику тока 220 В. В выключенном состоянии пары ртути внутри колбы имеют очень большое сопротивление, поэтому для образования разряда необходимо подать импульс высокого напряжения.
Для трубчатых вариантов используется электромагнитный балласт, который устанавливается в сам светильник.
Отличия люминесцентных ЭСЛ от ламп накаливания
- У люминесцентных свечение люминофора значительно превосходит накал спирали вольфрама, поэтому при аналогичной мощности экономки будут светить гораздо ярче.
- Почему лампы накаливания так греются? Их КПД очень малое, более 90% электроэнергии уходят на разогрев и поддержание накала вольфрамовой нити.
- За счет возможности регулирования состава люминофора выбирают цвет свечения наиболее комфортный для человеческого глаза.
- Из-за используемых веществ люминесцентные модели превосходят по сроку службы лампы накаливания почти в 20 раз.
- Минимальная теплоотдача в экономках позволяет устанавливать их в компактные настольные светильники, декоративную подсветку и торшеры, для таких целей подойдут лампочки на 11 Вт, а также мощные на 20, 24 и 25 Вт. Их подключают даже от зарядного устройства или аккумулятора.
- Максимальная яркость в лампах накаливания и светодиодных вариантах достигается сразу, а в экономках разогрев паров ртути может занять от 1 до 3 минут.
- На морозе интенсивность свечения люминофора снижается почти в 2 раза.
- Люминесцентные лампы не приспособлены к работе в помещениях, где часто пользуются выключателем, это грозит выходом из строя пускового конденсатора, и лампа может сгореть.
- ЭСЛ не работают в схеме с диммерами, при падении напряжения они выключаются.
ЭСЛ и лампы накаливания
Ремонт энергосберегающих ламп своими руками
Если ЭСЛ перестала включаться, есть смысл попробовать самостоятельно восстановить ее работоспособность. Для этого необходимо выполнить разбор, аккуратно сняв цоколь и вытащив электронную схему из корпуса, затем нужно осмотреть ее на исправность. Разборка и ремонт выполняется путем замен вышедших из строя деталей.
- Предохранитель. Является наиболее частой причиной поломки лампы. Его выгорание обычно определяется визуально. Проблема решается выпаиванием старого и установкой нового, аналогичной емкости.
- Нити накала колбы. Для их проверки необходимо выпаять по одному выводу с каждого конца. Сопротивление каждой нити должно быть одинаковым. При обнаружении сгоревшей нити на параллельную спираль припаивается резистор с аналогичным сопротивлением, как у поврежденного участка.
- С помощью мультимера или иного прибора необходимо проверить транзисторы, конденсаторы, диоды, триаки и стабилитроны. Они повреждаются во время сильной перегрузки или короткого замыкания. При обнаружении такого элемента – разобрать и перепаять на аналогичный, перед этим проверить заменяемую деталь.
- При повреждении самой колбы необходимо правильно осуществить утилизацию – в обычных условиях ее восстановить невозможно.
Важно! ртути может быть губительным для здоровья, особенно она опасна, если рядом есть ребенок. Разбирать ее в случае повреждения строго запрещено
Варианты подключений
Подключение с использованием электромагнитного баланса (ЭмПРА)
Наиболее распространенный тип подключения люминесцентного источника света — схема со стартером, где используется ЭмПРА.
Принцип действия схемы базируется на том, что в результате подключения питания в стартере возникает разряд и происходит замыкание биметаллических электродов.
Ток в электроцепи проводников и стартера ограничивается только внутренним дроссельным сопротивлением. В результате рабочий ток в лампочке увеличивается почти в три раза, происходит стремительный нагрев электродов, а после потери температуры проводниками возникает самоиндукция и зажигание лампы.
Недостатки схемы:
- В сравнении с другими способами это довольно затратный вариант с точки зрения расхода электроэнергии.
- Пуск занимает не меньше 1 – 3 секунд (в зависимости от степени износа источника света).
- Невозможность работы при низкой температуре воздуха (например, в условиях неотапливаемого подвального или гаражного помещения).
- Имеется стробоскопический эффект мигания лампочки. Этот фактор отрицательно действует на человеческое зрение. Такое освещение нельзя применять в производственных целях, потому что быстро движущиеся предметы (например, заготовка в токарном станке) кажутся неподвижными.
- Неприятное гудение дроссельных пластинок. По мере износа устройства звук нарастает.
Схема включения устроена таким образом, что в ней есть один дроссель на две лампочки. Индуктивности дросселя должно хватать на оба источника света. Используются стартеры на 127 Вольт. Для одноламповой схемы они не подходят, там нужны устройства на 220 Вольт.
На картинке внизу показано бездроссельное подключение. Стартер отсутствует.
Схема используется в случае перегорания у ламп нитей накала. Используется повышающий трансформатор Т1 и конденсатор С1, ограничивающий ток, идущий через лампочку от 220-вольтной сети.
Следующая схема используется для лампочек с перегоревшими нитями. Однако отсутствует необходимость в повышающем трансформаторе, благодаря чему конструкция устройства становится проще.
Ниже показан способ использования диодного выпрямительного моста, который нивелирует мерцание лампочки.
На рисунке внизу та же методика, но в более сложном исполнении.
Две трубки и два дросселя
Чтобы подключить лампу дневного света, можно использовать последовательное подключение:
- Фаза от проводки направляется на вход дросселя.
- От дроссельного выхода фаза идет на контакт источника света (1). Со второго контакта направляется на стартер (1).
- Со стартера (1) отходит на вторую контактную пару этой же лампочки (1). Оставшийся контакт стыкуют с нулем (N).
Тем же образом подключают вторую трубку. Вначале дроссель, затем один контакт лампочки (2). Второй контакт группы направляется на второй стартер. Выход стартера объединяется со второй парой контактов источника света (2). Оставшийся контакт следует подсоединить к нулю ввода.
Схема подключения двух ламп от одного дросселя
Схема предусматривает наличие двух стартеров и одного дросселя. Наиболее дорогостоящий элемент схемы — дросселя. Более экономный вариант — двухламповый светильник с дросселем.
О том, как реализовать схему, рассказывается в видео.
Как проверить люминесцентную лампу
Неисправности могут визуально проявляться таким образом.
Деградация люминофора в ЛЛ
Обратимся к устройству самой лампы. С двух сторон у нее размещены электроды, они делаются из вольфрама, так как это тугоплавкий металл. Для увеличения срока службы эти электроды покрываются щелочным соединением. Это способствует облегчению зажигания тлеющего разряда и защищает электроды. Часты включения и выключения влекут за собой частое нагревание и остывание защитного покрытия. Таким образом со временем оно просто отслаивается, образуются незащищенные участки на вольфрамовом электроде. В момент запуска вольфрамовая нить разогревается неравномерно. Открытые участки разогреваются сильнее происходит сначала точечное выгорание, со временем произойдёт разрушение электрода. О начале выгорания и свидетельствует такое потемнение. Это — щелочные соединения, которые осаждаются на люминофорном слое. Но даже если электрод находится в обрыве, а колба лампы цела и люминофор не обсыпался, то лампу еще возможно какое-то время использовать. При этом применяется схема умножителя.
Целостность электродов можно проверить еще и мультиметром. Режим прозвонки (значок диода на приборе). В случае целостности контактов, Вы услышите писк, как при замыкании щупов. Можно воспользоваться режимом омметра, прибор должен показать сопротивление 3-16 Ом. В случае индикации бесконечного сопротивления электрод находится в обрыве и в традиционных схемах (также как и с ЭПРА) использование принципиально невозможно.
При использовании классической схемы со стартером и дросселем, лампу, у которой хотя бы один из электродов находится в обрыве зажечь не удастся. Если балластный дроссель находится в обрыве, то лампа также не загорится. Исправный дроссель должен обладать сопротивлением 60 Ом, плюс-минус 5 Ом. Вышедший из строя дроссель можно определить «на глаз» по косвенным признакам: характерный запах, пятна.
Как устроена лампа КЛЛ?
Устройство таких источников света и люминесцентных линейных лампочек сходно. Разница между этими вариантами заключается в форме колбы. Есть и другое отличие – энергосберегающие осветительные элементы (КЛЛ) оснащены электронным пускорегулирующим аппаратом. ЭПРА скрыт внутри корпуса изделия. Внутри колбы располагаются электроды.
Компактная люминесцентная лампа может быть установлена в разнотипные светильники, что возможно благодаря широкому ассортименту моделей с разными держателями (штырьковыми, резьбовыми).
Устройство компактной энергосберегающей лампы
В основе функционирования таких источников света лежит явление люминесценции. Для его реализации внутренние стенки энергосберегающей лампочки покрываются люминофором.
Различные формы трубок
Это порошок специального состава, благодаря которому продуцируемое источником света ультрафиолетовое излучение становится видимым человеку. Появление УФ-свечения обусловлено процессами, которые проходят внутри колбы при подаче сетевого напряжения. Этому способствует газообразное наполнение (инертный газ и пары ртути).
Типы цоколей ламп дневного света
Вне зависимости от конструкции лампы, она в любом случае будет оборудована цокольными элементами. Это обязательный элемент. Они служат для подключения и подачи электрического тока на электроды осветительного прибора. Цоколь предназначен для надежного крепления и обеспечения контакта
При покупке обязательно надо обратить внимание на тип цоколя, в противном случае просто не удастся установить лампу. Цоколь и патрон обязательно должны взаимно соответствовать
Типы цоколей
Классифицировать их можно на две большие категории: резьбовые и штыревые. В последнее время резьбовые имеют более широкое распространение. Их можно назвать классикой. В быту они используются без каких-либо переделок патрона, т.е. люминесцентную лампу с цоколем Е14 и Е27 можно применить вместо обычных ламп накаливания. Основными техническими показателями являются диаметр и расстояние между витками.
Штыревые цоколи люминесцентных ламп расположены как правило у торцов источника света. Это могут быть и прямые, и U-образные лампы.
Сетевое напряжение и мощность лампы
Для нормальной работы источников освещения требуется рабочее напряжение сети 220В с частотой 50 Гц. Это стандартные параметры, отклонение от которых отрицательно влияет на технические характеристики люминесцентных ламп, снижая их функциональность и качество освещения.
От напряжения практически полностью зависит потребляемая мощность. Его воздействие проявляется следующим образом:
- Значительные перепады напряжения приводят к изменению мощности в люминесцентной лампе как в сторону увеличения, так и в сторону уменьшения. Даже очень мощный прибор будет слабо светить при недостаточном напряжении, произойдет снижение энергоэффективности ламп. Поэтому, прежде чем говорить о неисправности, следует замерить сетевое напряжение.
- Резкие колебания напряжения значительно снижают качество светового потока. В случае изменения частоты возрастает коэффициент пульсации и лампа начинает мерцать.
- Нестабильность сетевого напряжения приводит к быстрому износу и снижению работоспособности источника освещения. Колебания не должны превышать 10% от номинала, в противном случае срок службы люминесцентных ламп снизится и они быстро выйдут из строя.
Поэтому, выбирая лампу для конкретного места хранения и установки, следует обращать внимание на то, сколько мощности она потребит. При отсутствии маркировки нужно произвести замеры и уже потом принимать решение об использовании данной лампы
Как работает лампа дневного света
Напряжение, которое подводится к спиральным электродам на концах лампы, изначально недостаточно для ее розжига. И тут на помощь приходит дроссель и стартер.
После появления напряжения в стартере, внутри образуется разряд, который нагревает биметаллический электрод.
Из-за нагрева форма электрода меняется и происходит его замыкание.
В результате чего, резко возрастает ток и электроды раскаляются. Ток ограничивается только сопротивлением самого дросселя.
У стартера контакты постепенно остывают и размыкаются. При размыкании, благодаря дросселю, в лампе возникает эффект самоиндукции, с образованием высоковольтного импульса и электрического разряда напряжением до 1000В.
От этого разряда создается ультрафиолетовое свечение ртутных паров, которыми заполнена колба. Оно оказывает воздействие на люминофор, и только благодаря ему, мы и можем различать свет в привычном для нас спектре.
Если для кого-то это объяснение слишком заумно, то вот одно из самых простых и понятных видео, объясняющих на доступном всем языке, как же работает лампа ЛДС.
Получается, что сам процесс включения люминесцентной лампы дневного света довольно длителен и занимает 5 этапов:
подача 220В из розетки и замыкание контактов стартера
разогрев спиралей электродов
размыкание контактов стартера
подача высоковольтного импульса от дросселя
образование тлеющего разряда в колбе и поддержка его внешним напряжением 220В + шунтирование стартера и исключение его из схемы
Как видно из процесса запуска, при неисправности ламп, виноватыми могут быть три элемента:
сама лампочка
стартер
дроссель
При этом, чаще всего повреждаются лампочки и стартера – из-за перегоревших вольфрамовых нитей и конденсаторов.
Узнать об этом проще всего – заменив стартер или лампочку. Тем более, что стоят они копейки. А вот как быстро узнать о неисправности дросселя?
Применение:
Сфера применения энергосберегающей компактной люминесцентной лампы TDM ELECTRIC та же, что и у ламп накаливания. Но энергосберегающие лампы имеют ряд преимуществ:
- Температура колбы ниже, чем у ламп накаливания. Это позволяет использовать лампы в светильниках, критичных к повышенному нагреву. А также в светильниках с тканевыми абажурами.
- Различный спектральный состав по-разному влияет на настроение человека. Мягкий теплый свет (2700 К) идеально подойдет для квартир, гостиниц, ресторанов, так как способствует расслаблению. Яркий дневной свет (4200 К) лучше использовать для создания рабочей атмосферы в общественных и промышленных помещениях, спортивных залах, в офисах и учреждениях. В детских и образовательных учреждениях рекомендуется смешивать лампы теплой и холодной цветности.
- Для продления срока службы лампы оборудованы системой плавного запуска. Это позволяет лампе выдерживать более 500 000 включений (при условии, если лампа перед очередным включением была выключена минимум на 2 минуты для того, чтобы элемент в схеме электронного ПРА, регулирующий процесс зажигания, мог за это время охладиться.
Характеристики ламп
Основными характеристиками всех выпускаемых энергосберегающих приборов являются:
Цветовая температура
При использовании устройств с нитью накаливания получить разную цветовую температуру проблематично. С появлением энергосберегающих устройств стало возможно применять лампы белого света с различным оттенком цвета. По цветовой температуре светильники бывают:
- 6500К — холодный белый свет, который хорошо подходит для уличного освещения;
- 4200К — нейтральный белый, средний между холодным и теплым светом. Подходит для использования в жилых, промышленных, медицинских и других помещениях.
- 2700К — теплый белый свет, создает уют в доме и используется для освещения жилых помещений.
Дополнительная информация! Выбор цветовой температуры индивидуален и зависит от предпочтений человека и целей, для которых будет использовано освещение.
Тип цоколя
Тип цоколя стандартизирован и существует в двух исполнениях:
- резьбовое: обозначение данного цоколя начинается с буквы Е и заканчивается числом, который обозначает диаметр цоколя (Е14, Е27).
- штырьковое: маркировка начинается с буквы G, а цифры означают расстояние между контактами.
Дополнительная информация! Для покупки осветительного прибора с правильным цоколем, лучше взять с собой в магазин вышедшую из строя или заглянуть в паспорт светильника.
Срок службы
Энергосберегающие приборы являются надежными и долговечными устройствами. Срок их службы достаточно большой и обычно составляет от нескольких тысяч до десятков тысяч часов работы.
Обратите внимание! Важно понимать, что на срок службы существенно влияет количество циклов включения/отключения. Чем их больше — тем меньше будет служить энергосберегающая лампа
Световой поток и светоотдача
Световой поток — это физическая величина, показывающая количество отдаваемой световой энергии в единицу времени. В международной системе единиц (СИ) Он измеряется в люменах (лм или lm).
Светоотдача ламп показывает соотношение светового потока к мощности прибора (лм/Вт). Старые и неэффективные устройства накаливания имеют низкую светоотдачу (10-20 лм/Вт), более совершенные энергосберегающие устройства имеют высокий коэффициент полезного действия, а соответственно и светоотдачу (около 50-100 лм/Вт).
Важно! Светоотдача может меняться со временем при длительной эксплуатации. Такое изменение является нормальным и связано с износом светодиодов или ухудшением свойств люминесцентного прибора
Мощность
Важной характеристикой всех электрических приборов является мощность. Лампы освещения тоже не являются исключением
При использовании ламп накаливания существенно увеличивается количество потребляемой электрической энергии. Чтобы этого избежать потребители постепенно переходят на энергосберегающие приборы, потому что они энергоэффективные и имеют минимальную мощность лампы при большом световом потоке.
Таблица сравнения ламп, показывающая соответствие мощности накаливания и энергосберегающих:
Мощность, Вт | Световой поток, лм | ||
Накаливания | Светодиодные | Люминесцентные | |
25 | 3 | 6 | 255 |
40 | 5 | 11 | 430 |
60 | 9 | 15 | 720 |
75 | 11 | 19 | 955 |
100 | 14 | 18 | 1350 |
150 | 19 | 45 | 1850 |
200 | 27 | 70 | 2650 |
Обратите внимание! На упаковке светодиодных и энергосберегающих устройств производители часто указывают эквивалент (например 11 ватт энергосберегающая лампа равна 40 ваттной накаливания), который соответствует мощности лампы накаливания. Это делается не только из маркетинговых целей, но и для понимания покупателем световой способности прибора
Принцип работы компактных люминесцентных ламп.
Внутри колбы расположены вольфрамовые электроды. На них наносится слой активированного вещества. Применяется смесь оксидов бария, стронция, кальция. Принципиально, по сравнению с источниками дневного света (лл) нового ничего не добавилось. КЛЛ можно считать естественным развитием ЛДС. По аналогии, сама колба заполнена инертным газом. Внутри колбы находится небольшое количество жидкого металла – ртути. Она необходима для облегчения тлеющего разряда. Во время работы лампы ртуть переходит из жидкого состояния в парообразное.
При разряде большая часть излучения находится в ультрафиолетовой части спектра. Этот свет мы видеть не можем, более того такое излучение может быть вредно. После ионизации газа и паров ртути, ультрафиолет воздействует на слой люминофора. В результате мы видим свечение. Оттенок зависит от химического состава. По большей части, именно люминофор определяет световые характеристики компактной люминесцентной лампы.
Как известно люминесцентные источники света не могут работать без пускорегулирующего устройства. Пускатель должен дать импульс для зажигания лампы (в зависимости от мощности – от 1кВ), между электродами должен образоваться электрический пробой. По мере испарения ртути разряд усиливается. Сопротивление между электродами падает, сила тока растет. С ним растет и яркость. Потому ток и напряжение необходимо ограничивать и поддерживать на определенном уровне. Напряжения горения существенно ниже напряжения зажигания. Стремление к миниатюризации продиктовало необходимость встраивания электронной пуско-регулирующей аппаратуры в саму лампу. Точнее, плата с электроникой расположена в корпусе между цоколем и разрядной трубкой. Естественно, здесь уже нет громоздкого дросселя и стартера. Частота разрядов находится в районе 50 кГц. Соответственно глаз человека не может воспринимать мерцание. Т.е. это в одну тысячу раз больше, чем с обычными лампами дневного света. Коэффициент мощности приближается к единице, соответственно, отсутствует реактивная составляющая.
Основные выводы
Энергосберегающие лампы различаются по типу цоколя на резьбовые и штырьковые, по температуре цвета светового потока, а также по геометрическим параметрам и форме колбы. При этом среди ее основных эксплуатационных характеристик выделяются:
- Мощность.
- Вид цоколя.
- Форма колбы.
- Цветовая температура.
- Срок эксплуатации.
Работа энергосберегающей люминесцентной лампы основана на схеме розжига свечения паров ртути под действием высоковольтного напряжения, проходящего через спираль накала. Ее главными особенностями являются долговечность, экономия, равномерное яркое свечение и возможность самостоятельного ремонта.
Предыдущая
ОсвещениеУличный фонарь своими руками: необходимые материалы, требования к безопасности, монтаж
Следующая
ОсвещениеКак отремонтировать энергосберегающую лампу своими руками