Как подобрать драйвер светодиодной лампы: виды, назначение + особенности подключения

Основные характеристики

При подборе нужно учитывать три основных параметра: выходное напряжение, ток и потребляемая нагрузкой мощность.

Напряжение на выходе драйвера зависит от нескольких факторов:

  • падение напряжения на светодиоде;
  • количество светодиодов;
  • способ подключения.

Ток на выходе драйвера определяется характеристиками светодиодов и зависит от следующих параметров:

  • мощность светодиодов;
  • яркость.

Мощность светодиодов влияет на потребляемый ими ток, который может варьироваться в зависимости от требуемой яркости. Драйвер должен обеспечить им этот ток.

Мощность нагрузки зависит от:

  • мощности каждого светодиода;
  • их количества;
  • цвета.

В общем случае потребляемую мощность можно рассчитать как

где Pled — мощность светодиода,

N — количество подключаемых светодиодов.

Максимальная мощность драйвера не должна быть меньше .

Стоит учесть, что для стабильной работы драйвера и предотвращения выхода его из строя следует обеспечить запас по мощности хотя бы 20-30%. То есть должно выполняться следующее соотношение:

где Pmax — максимальная мощность драйвера.

Кроме мощности и количества светодиодов, мощность нагрузки зависит еще от их цвета. Светодиоды разных цветов имеют разное падение напряжения при одинаковом токе. Например, красный светодиод CREE XP-E обладает падением напряжения 1.9-2.4 В при токе 350 мА. Средняя потребляемая им мощность таким образом составляет около 750 мВт.

У XP-E зеленого цвета падение 3.3-3.9 В при том же токе, и его средняя мощность составит уже около 1.25 Вт. То есть драйвером, рассчитанным на 10 ватт, можно питать либо 12-13 красных светодиодов, либо 7-8 зеленых.

sxemy-podnial.net

Предлагаю вашему вниманию схемы драйверов светодиодных светильников, которые мне пришлось недавно ремонтировать. Начну с простой (фото 1, справа) и схема на рисунке 1.

Светодиодные светильники. Фото 1.

Драйвер светодиодного светильника на CL1502. Рис. 1.

В схеме этого драйвера установлена микросхема CL1502. Микросхем с подобными функциями выпущено уже много, и не только в корпусе с 8 ножками. На эту микросхему в интернете есть много технических данных, к примеру в . Собран драйвер по «классической» схеме. Неисправность была в выгорании пары светодиодов. Первый раз просто закоротил их, так как находился вдали от «цивилизации». Тоже сделал и во второй раз. И когда сгорела третья пара, я понял, что жить этому светильнику осталось мало. Простым закорачиванием пар светодиодов, так просто не обойдёшься. Требовалось что-то по-кардинальные. Ранее я изучал схемотехнику и работу подобных микросхем, с целью укоротить светодиодную лампу, в корпусе трубчатой стеклянной люминисцентной 36 Ватт, с длины 120 сантиметров в 90, так как был в наличии такой светильник, установленный над рабочим столом. И всё удалось и работает. А здесь. Насколько я понял работу подобных светильников, с применением таких драйверов, то ничего плохого не должно происходить после закорачивания хотя бы всех светодиодов, кроме последней пары. Ведь всё в них решает датчик тока, в данной схеме это резисторы R3 и R4. Напряжение выделенное этими резисторами, попадая через выводы 7 и 8 микросхемы CL1502 к компаратору выключения силового ключа работают отлично. Но что-то всё же жжёт светодиоды. Но что? Моё предположение — их жжёт сам драйвер! Светодиоды применённые в этом светильнике, похожи на 2835SMDLED (0,5 Вт одного светодиода). И если это действительно они, то заявленная мощность светильника вполне оправдана. Но у меня, сильные подозрения, что в светильнике стоят 3528SMDLED, которые имеют параметры, чуть ли не на порядок ниже. Но понять мне это очень трудно, так как на SMD светодиодах нет обозначений. Что сделал я? Я убрал с платы резистор R4. При этом уменьшился ток через светодиоды и… светодиоды перестали сгорать. Что интересно, в строительном вагончике, в котором стояли три светильника одного типа, последовательно пришлось ремонтировать все три. И везде пришлось снять по одному резистору. И да, везде упал световой поток, хотя глазом это и трудно определить, но если сравнивать, то заметно.

В другом вагончике, было два светильника с внешними размерами 595х595 мм.. И они тоже «горели». В этих светильниках ячейки состояли из четырёх светодиодов в параллели и было таких 28 ячеек. Так как и там была подобная схема (поднять не удалось), то просто выпаял по одному резистору.

В итоге, можно сделать вывод, что ремонт можно выполнять, по подобной методике, то есть уменьшать ток через светодиоды, так как лучше, пусть светят темнее, чем совсем погаснут. Хотя конечно, правильнее поменять все светодиоды на 2835SMDLED, но это при их наличии.

Драйвер светодиодного светильника на B77CI. Рис. 2.

Схема второго драйвера, изображённого на рисунке 2, я «поднял» со светильника, который нашёл в металлоломе, с механическими поломками корпуса. На рисунке 3 схема четырёх плат светодиодов по 9 Вт каждая. Хотел снять светодиоды для запчастей. И даже, не сразу заметил невзрачную коробочку с драйвером. Схема оказалась почти «монстром».

Фонарь светодиодного светильника. Рис. 3.

Внешний вид платы драйвера на B77CI. Фото 2.

Наличие двух микросхем, двух мощных полевых транзисторов, двух дросселей и двух электролитических конденсаторов 220 мк х 100 В включенных параллельно, указывало на то, что разработчики поработали на славу. Так же присутствует довольно хорошая схема фильтров (смотрите фото 2). Микросхема DX3360T — это, по всей видимости, стабилизатор напряжения, и возможно, с корректором мощности. Я в интернете нашёл только невзрачную картинку, без описания. А на микросхему B77CI не нашёл ни чего, и названия выводов на схеме ставил, по интуиции. В работе этот драйвер не видел. Но предполагаю хорошую работу. Но если, придётся уменьшать ток через светодиоды, то нужно или убрать с платы один-два резистора Rs4..Rs6, или менять на другие, расчётные.

И ещё. Совсем не понятно, как в подобных светильниках организован отвод тепла от светодиодов. Ведь они запаиваются на платки из фольгированного стеклотекстолита, шириной в 5 мм. и толщиной примерно в 1 мм.? Думаю, что почти ни как. Всё ширпотреб.

Литература: 1. https://www.dianyuan.com/upload/community/2014/04/10/1397117125-79110.pdf

Компоновка драйвера для светодиода 10 Ватт своими руками

Собрать драйвер для мощного светодиода можно самостоятельно, используя электронные платы от вышедших из строя люминесцентных ламп. Чаще всего в таких светильниках перегорают лампы. Электронная плата остается рабочей, что позволяет использовать ее компоненты для самодельных блоков питания, драйверов и других устройств. Для работы могут понадобиться транзисторы, конденсаторы, диоды, катушки индуктивности (дроссели).

Неисправную лампу необходимо аккуратно разобрать с помощью отвертки. Чтобы сделать драйвер для светодиода 10 Вт, следует воспользоваться люминесцентной лампой, мощность которой 20 Вт. Это необходимо для того, чтобы дроссель мог с запасом выдержать нагрузку. Для более мощной лампы следует либо подбирать соответствующую плату, либо заменить сам дроссель на аналог с большим сердечником. Для LED-источников с меньшей мощностью можно отрегулировать число витков обмотки.

Маленький стабилизатор напряжения на микросхеме МР1584

Далее поверх первичных витков обмотки необходимо сделать 20 витков провода и с помощью паяльника соединить эту обмотку с выпрямительным диодным мостом. После этого следует подать напряжение от сети 220В и измерить выходное напряжение на выпрямителе. Его значение составило 9,7В. LED-источник через амперметр потребляет 0,83 А. Номинал этого светодиода 900 мА, однако чтобы заниженное потребление тока позволит увеличить его ресурс. Сборка диодного моста осуществляется путем навесного монтажа.

Новую плату и диодный мост можно разместить в подставке от старого настольного светильника. Таким образом, светодиодный драйвер можно собрать самостоятельно из имеющихся в наличии радиодеталей от вышедших из строя устройств.

В силу того что светодиоды достаточно требовательны к источникам питания, необходимо правильно подбирать к ним драйвер. Если преобразователь выбран правильно, можно быть уверенным, что параметры LED-источников не ухудшатся и светодиоды прослужат положенный им срок.

Импульсные блоки питания

Во-первых, выпрямление напряжения происходит сразу же. То есть, подается на вход переменно 220В и тут же на входе преобразуется в постоянное 220V.

Далее стоит генератор импульсов. Главная его задача — создать искусственно переменное напряжение с очень большой частотой. В несколько десятков или даже сотен килогерц (от 30 до 150кГц). Сравните это с привычными нам 50 Гц в домашних розетках.

Кстати за счет такой огромной частоты, мы практически не слышим гул импульсных трансформаторов. Объясняется это тем, что человеческое ухо способно различать звук до 20кГц, не более.

Третий элемент в схеме — импульсный трансформатор. Он по форме и конструкции напоминает обычный. Однако главное его отличие — это маленькие габаритные размеры.

Это как раз таки и достигается за счет высокой частоты.

Из этих трех элементов самым главным является генератор импульсов. Без него, не было бы такого относительно маленького блока питания.

Преимущества импульсных блоков:

маленькая цена, если конечно сравнивать по мощности его, и такой же блок собранный на обычном трансформаторе

КПД от 90 до 98%

напряжение питания можно подавать в большом разбросе

при качественном производителе блока питания, у импульсных ИБП более высокий косинус фи

Есть и недостатки:

усложненность сборочной схемы

сложная конструкция

если вам попался не качественный импульсный блок, то он будет выдавать в сеть кучу высокочастотных помех, которые будут влиять на работу остального оборудования

Проще говоря, блок питания что обычный, что импульсный — это устройство у которого на выходе строго одно напряжение. Его конечно можно «подкрутить», но в не больших диапазонах.

Для светодиодных же светильников такие блоки не подойдут. Поэтому для их питания используются драйверы.

Как проверить led driver мультиметром

интересные РАДИОСХЕМЫ самодельные

Здравствуйте. Вчера пришел High-PF-3000mA-100W-DC-30V-36V-Dimmable-Isolated-Constat-Current-LED-Driver-for-100w-led драйвер светодиода. Как проверить его на работоспособность (матрица 100 ватт придет еще не скоро). Чем нагрузить?

У него 3 ампера 30 вольт. Значит нужно нагрузочное сопротивление 10 Ом 100 ватт. Или резисторами составить, или что-нить похожее подобрать (лампочки от авто и т.д. )

Как начнёт греться – значит ток идёт.

Добавлено (18.10.2017, 21:29)———————————————Да, ещё я его проверял без нагрузки. На выходе показывало 55 вольт, с колебаниями около 2вольт

Добавлено (19.10.2017, 08:45)———————————————Блин, я думаю нашёл свой косяк. Сегодня решил подключить свой лед чип через трансформатор на 35 вольт через диодный мост. И посмотреть через сварочную маску, все ли элементы горят. оказалось что горят только два ряда светодиодов. Блин , а без маски кажется горят все очень ярко. И на китайца наезжал напрасно. Печаль

Как проверить, не выпаивая диод

Светодиоды, установленные на плату, проверяются с помощью щупа. Но стандартные инструменты могут и не пролезть в разъем для транзистора. Здесь понадобится тонкий проводник. Это могут быть:

  • швейные иглы;
  • часть кабеля или жилки из многожильного провода;
  • канцелярские разогнутые скрепки.

Проводник придется припаять к фольгированному щупу или подсоединить без штекера, получив переходник. Если используется фольгированная пластинка с припаянными кусочками проволоки, необходимо вставить её в соответствующий слот мультиметра и воспользоваться самодельными щупами.

Где купить драйверы для светодиодов

Стоимость драйвера может достигать 300 рублей и выше

Реализующими компаниями представлен огромный ассортимент драйверов для светодиодов, технические характеристики и цены которых можно увидеть в прайсах. Как правило цены на продукцию носят ориентировочный характер и уточняются при заказе у менеджера проекта. В ассортименте имеются преобразователи различной мощности и степени защиты, применяемые для наружного и внутреннего освещения, а также для подсветки и тюнинга автомобилей.

Выбирая драйвер следует учитывать условия его использования и потребляемую мощность светодиодной конструкции. Поэтому приобретать драйвер необходимо перед покупкой светодиодов

Так, прежде чем купить драйвер для светодиодов 12 вольт, необходимо принять во внимание, что он должен иметь запас мощности около 25-30%. Это нужно для того, чтобы уменьшить риск повреждения или полного выхода из строя прибора при коротком замыкании или перепадах напряжения в сети

Стоимость преобразователя зависит от количества приобретаемых устройств, формы оплаты и сроков доставки.

В таблице приведены основные параметры и размеры стабилизаторов напряжения 12 вольт для светодиодов с указанием их ориентировочной цены:

Модификация LD DC/AC 12 VГабариты, мм (в/ш/г)Выходной ток, AМощность, WЦена, руб.
1x1W 3-4VDC 0.3A MR118/25/120,31х173
3x1W 9-12VDC 0.3A MR118/25/120,33х1114
3x1W 9-12VDC 0.3A MR1612/28/180,33х135
5-7x1W 15-24VDC 0.3A12/14/140,35-7х180
10W 21-40V 0.3A AR11121/300,310338
12W 21-40V 0.3A AR1118/30/220,312321
3x2W 9-12VDC 0.4A MR1612/28/180,43х218
3x2W 9-12VDC 0.45A12/14/140,453х254

Схема питания светодиодов на основе конденсаторного делителя

К сожалению, в конструкции дешёвых светодиодных ламп на 220В из Китая не предусмотрен ни линейный, ни импульсный стабилизатор. Мотивируясь исключительно низкой ценой готового изделия, китайская промышленность смогла максимально упростить схему питания. Называть её драйвером не корректно, так как здесь отсутствует какая-либо стабилизация. Из рисунка видно, что электрическая схема лампы рассчитана на работу от сети 220В. Переменное напряжение понижается RC-цепочкой и поступает на диодный мост. Затем выпрямленное напряжение частично сглаживается конденсатором и через токоограничивающий резистор поступает на светодиоды. Данная схема не имеет гальванической развязки, то есть все элементы постоянно находятся под высоким потенциалом.

В результате частые просадки сетевого напряжения приводит к мерцанию светодиодной лампы. И наоборот, завышенное напряжение сети вызывает необратимый процесс старения конденсатора с потерей ёмкости, а, иногда, становится причиной его разрыва. Стоит отметить, что еще одной, серьезной отрицательной стороной данной схемы является ускоренный процесс деградации светодиодов вследствие нестабильного тока питания.

Выбор драйвера

Выбор драйвера во многом определяет место, где планируется установка светильника.

Например, в условиях складского помещения для светильника понадобится драйвер с рабочей температурой выше 0◦С и степенью влагостойкости от IP 20

Если освещать будем офис или любое другое административное помещение, где работают люди и нужна высокая освещаемость, то в таком случае надо брать во внимание и коэффициент пульсации: он не должен быть выше 5%. Границы входящего напряжения зависят от конкретных условий

Например, если в помещении установлено большое количество оборудования или оно достаточно мощное, то есть вероятность падения (скачков) напряжения в сети

В этом случае понадобится источник питания с универсальным входом

Например, если в помещении установлено большое количество оборудования или оно достаточно мощное, то есть вероятность падения (скачков) напряжения в сети. В этом случае понадобится источник питания с универсальным входом.

Блоки питания и драйверы для светодиодных светильников

Напряжение в сети офисных помещений обычно стабильно, и стандартного диапазона входных напряжений бывает более чем достаточно. Но в любом случае светодиодный светильник нуждается в корректоре коэффициента мощности, потому что прибавочная мощность оказывается выше порога в 25 Ватт. Есть модели, рассчитанные на внутреннее освещение. Это модели светильников PLD-40 и PLD-60. Их коэффициент пульсации не выше 20%, а значит, они подойдут для освещения помещений, не требовательных к яркому освещению. Драйверы таких моделей защищены от короткого замыкания и перегревов, а также имеют полное соответствие требованиям электромагнитной совместимости. Таким образом, примеры моделей PLD-40 и PLD-60 продемонстрировали нам прекрасное соответствие для стандартных светильников без регулировки освещения.

Блок питания PLD-60-1050B для внутреннего светодиодного освещения

Требования к драйверам в зависимости от назначения светильника:

Если светильник устанавливается для наружного освещения, то главное требование для его драйвера – это широкий диапазон переносимых температур, гарантирующих исправную работу после длительного нахождения на морозе.

Герметичный контроллер с драйвером светодиодного светильника

Блок питания (кроме того, что он должен быть защищен указанным способом) должен обладать широким диапазоном входного напряжения ввиду того, что линии питания весьма нестабильны. Он должен быть надежно защищен от перепадов напряжения.

Если светильник устанавливается для освещения дорог, железной дороги, метро, то драйвер у такого светильника должен обладать виброустойчивостью. Этому способствует компаунд, который залит в блоки питания, что позволяет ему не воспринимать вибрации. В противном случае элементы просто отвалятся от платы при первой же вибрационной атаке.

От качества выполнения деталей драйвера зависят все параметры и возможности светильника. Среди них и такие важные, как уровень пульсации, диапазон рабочих температур, устойчивость к скачкам напряжения, температурный диапазон

Вот почему так важно качество комплектующих этого прибора. Как известно, светодиодный светильник led сам по себе является очень надежным осветительным прибором, отличающимся долговечностью

Однако он не сможет пройти весь срок своей службы, если не подойти должным образом к выбору драйвера в светодиодных лампах

Ведь основная причина выхода из строя светильника — не перегоревший светодиод, а плохой драйвер. Именно из-за него вам придется носить светильник на ремонт

Однако он не сможет пройти весь срок своей службы, если не подойти должным образом к выбору драйвера в светодиодных лампах. Ведь основная причина выхода из строя светильника — не перегоревший светодиод, а плохой драйвер. Именно из-за него вам придется носить светильник на ремонт.

Что такое драйверы для светодиодов и зачем они нужны

Светимость полупроводникового
лед-кристалла напрямую зависит от силы тока, проходящего через него.
Нестабильность этого параметра, характерная для бытовой сети 220 В, приводит к
быстрой деградации материала и выходу из строя светодиода. Поэтому и требуется
для него драйвер. В его задачу входит преобразование параметров электрического
тока в следующих направлениях:

  1. Стабилизация силы в точном значении выходных параметров.
  2. Задание амплитуды.
  3. Выпрямление из переменного в постоянный.

Особенности драйвера светодиодов на 220 В

Главная особенность
драйвера для светодиодов, питание которых осуществляется от 220 В, состоит в
том, что он изменяет напряжение и предназначен для работы с электрическим током
подобных характеристик. Поэтому для подключения лампочки не пригодны его
низковольтные аналоги – например, от фонарика или автомобиля на 12 вольт. Кроме
того, модели последнего типа могут включать в состав понижающий блок –
трансформатор.

При изготовлении
преобразователя своими руками следует знать его основные характеристики:

  1. Потребляемый ток. Должен совпадать со значением аналогичного параметра светодиодов, в противном случае они либо не будут выдавать полной яркости, заложенной производителем, либо перегорят.
  2. Мощность. Эта характеристика выражается в ваттах и равняется суммарной мощности всех led-узлов схемы.
  3. Напряжение на выходе. Находится в прямой зависимости от способа подключения и количества лед-элементов и падения напряжения на них – рассчитывается из суммарного их значения.

Расчет мощности при выборе ленты из последовательно соединенных светодиодов позволяет правильно подобрать драйвер для питания подсветки от 220 В. Итоговое значение равняется сумме данного параметра всех элементов плюс 25% (запас на возможную перегрузку). Например, в лед-полоске 20 элементов по 0,5 Вт каждый, общее значение составит 10W. Однако на практике лучше купить или изготовить своими руками прибор на 12-13 ватт.

Теория питания светодиодных ламп от 220В

Лэд-лампа, как правило,
представляет собой набор пространственно расположенных в определенной
композиции небольших, но достаточно мощных светодиодов (3,3 вольт и 1 ватт).
Чтобы изготовить своими руками замену стандартной лампочке накаливания в 70-80
Вт, потребуется дюжина недорогих лед-элементов. Однако бытовая сеть 220 В имеет
для них избыточные параметры.

Поэтому потребуется понизить
амплитуд и силу, а также трансформировать переменный электрический ток в
постоянный. Для этого понадобится драйвер, для изготовления своими руками
которого применяется делитель напряжения на емкостной или резисторной нагрузке,
а также стабилизаторы.

Светодиодный драйвер своими руками для мощных светодиодов

Это одна из простейших схем, которую можно собрать своими руками из подручных материалов.

Q1 — N-канальный полевой транзистор (IRFZ48 или IRF530);

Q2 — биполярный npn-транзистор (2N3004, либо аналог);

R2 — 2,2 Ом, резистор мощностью 0,5-2 Вт;

Входное напряжение до 15 В;

Драйвер получится линейным и КПД определяется формулой: VLED / VIN

где VLED – падение напряжения на светодиоде,

VIN – входное напряжение.

Согласно законов физики чем больше разница между входным напряжением и падением на диоде и чем больше ток драйвера, тем сильнее греется транзистор Q1 и резистор R2.

VIN должно быть больше VLED на, как минимум, 1-2В.

Повторюсь, что схема очень простая и ее даже можно собрать простым навесным монтажом и она БУДЕТ работать без проблем.

Расчеты: — Ток светодиода примерно равен: 0.5 / R1 — Мощность R1: мощность, рассеиваемая резистором, составляет приблизительно: 0,25 / R3. выберите значение резистора не менее двукратной рассчитанной мощности, чтобы резистор не раскалился.

Так, для тока светодиода 700мА: R3 = 0,5 / 0,7 = 0,71 ом. Ближайший стандартный резистор — 0,75 ом. Мощность R3 = 0,25 / 0,71 = 0,35 Вт. нам понадобится по крайней мере 1/2 ватта номинального резистора.

Модификации схемы с дополнительным резистором и стабилитроном

Модификация схемы с дополнительным резисторомМодификация схемы с диодом Зенера

А теперь будем собирать светодиодный драйвер своими руками, используя некоторые модификации. Данные модификации имеют изменения касаемо ограничения напряжения первой цепи. Допустим, нам надо держать NFET (G-контакт) меньше 20 В и если мы желаем использовать источник питания выше 20 В. Данные изменения необходимы, если мы будем использовать с схемой микроконтроллер или подключать компьютер.

В первой схеме добавлен резистор R3, а во второй этот же резистор заменен на D2 — стабилитрон.

Если мы хотим установить напряжение G-pin примерно на 5 вольт — используйте стабилитрон 4,7 или 5,1 вольта (например: 1N4732A или 1N4733A).

Если входное напряжение ниже 10В, замените R1 на 22кОм.

Используя данные модификации можно получить возможность работы схемы с напряжением 60 В.

Используя данные модификации теперь можно преспокойно использовать микроконтроллеры, ШИМ или вообще подключаться к компьютеру.

Данные вещи рассматривать не буду. Но если заинтересует, то добавлю статью и такими схемами.

Модификация схемы для «диммирования» светодиодов

Рассмотрим еще одну модификацию. Данный собранный драйвер для светодиодов своими руками позволит «диммировать» светодиоды. Вернее это не будет полноценным диммером. Здесь основную роль играют 2 резистора, которые рассчитаны таким образом, что при включении-выключении переключателя яркость диода будет меняться. Т.е. «по — русски — диммер с костылем». Но и такой вариант имеет право на существование. Калькуляторы для расчетов резисторов Вы всегда сможете найти на нашем портале и воспользоваться ими.

Кто-то скажет — что «можно использовать» подстроечный резистор. Могу поспорить — на такие малые величины, к сожалению, нет подстроечных резисторов. Для этого есть совершенно другие схемы.

Срок годности

Срок эксплуатации драйвера несколько меньше по сравнению с оптической составляющей светодиодного светильника — порядка 30 000 часов. Это связано с рядом причин: скачками напряжения, изменениями температуры, влажности и нагрузкой на преобразователь.

Одно из уязвимых мест — сглаживающий конденсатор, в котором со временем испаряется электролит. В большинстве случаев это происходит при монтаже в помещениях с высокой влажностью или подключении к сети, в которой есть скачки напряжения. Подход приведет к повышению пульсаций на выходе устройства, что негативно воздействует на led-диоды.

Основные характеристики преобразователей

Перед тем как купить драйвер для светодиодов, следует ознакомиться с основными характеристиками устройств. К ним относят напряжение на выходе, номинальный ток и мощность. Выходное напряжение преобразователя зависит от величины падения напряжения на LED-источнике, а также от способа подключения и количества светодиодов в схеме. Ток находится в зависимости от мощности и яркости излучающих диодов. Драйвер должен обеспечить светодиодам такой ток, который необходим им для поддержки требуемой яркости.

К характеристикам драйвера относятся напряжение на выходе, номинальный ток и мощность

Одной из важных характеристик драйвера считается мощность, которую прибор выдает в виде нагрузки. На выбор мощности драйвера влияет мощность каждого LED-прибора, общее количество и цвет свечения светодиодов. Алгоритм расчета мощности состоит в том, что максимальная мощность устройства не должна быть ниже потребления всех светодиодов:

P = P(led) × n,

где P(led) – мощность единичного LED-источника, а n — количество светодиодов.

Кроме того должно выполняться обязательное условие, при котором бы обеспечивался запас мощности в пределах 25-30%. Таким образом значение максимальной мощности должно быть не меньше значения (1,3 х P).

Следует также брать во внимание цветовые характеристики светодиодов. Ведь различные по цвету полупроводниковые кристаллы имеют разную величину падения напряжения при прохождении через них тока одинаковой силы

Так падение напряжения у красного светодиода при токе 350 мА составляет 1,9-2,4В, тогда среднее значение его мощности будет равно 0,75 Вт. У аналога зеленого цвета величина падения напряжения находится в пределах от 3,3 до 3,9В и при таком же токе мощность составит уже 1,25 Вт. Значит к драйверу для светодиодов 12В можно подсоединить 16 красных LED-источников или 9 зеленых.

Полупроводниковые кристаллы разных цветов имеют разную величину падения напряжения

Линейные драйверы светодиодов

Компания Maxim выпускает линейные и импульсные драйверы светодиодов. Выходной каскад линейных драйверов представляет собой генератор тока на полевом транзисторе с p-каналом. Структура и типовая схема включения линейного драйвера показана на рис. 3.

Рис. 3. Типовая схема включения и структура линейного драйвера

Ток через последовательно включенные светодиоды задается резистором RSENSE (датчиком тока). Падение напряжения на этом резисторе определяет выходное напряжение дифференциального усилителя DIFF AMP, поступающее на неинвертирующий вход регулирующего усилителя IREG. Регулирующий ОУ сравнивает напряжение ошибки с опорным, формируя на своем выходе потенциал для управления полевым транзистором с p-каналом, работающим в линейном режиме, поэтому рассматриваемые драйверы проигрывают в эффективности импульсным. Однако линейные драйверы обладают простотой применения, низкой ценой и минимальными электромагнитными излучениями (ЭМИ).

В некоторых приложениях (например, в автомобильных) цена и простота применения имеют определяющее значение при выборе светодиодного драйвера. Основные параметры линейных драйверов светодиодов приведены в таблице 1.

Таблица 1. Линейные драйверы мощных светодиодов (Linear HB LED drivers)

НаименованиеОбласти примененияUвх, ВIвых.макс., АШИМ-димминг (PWM-Dimming)Корпус
Автомобильные приложенияОбщее применениеПодсветка дисплея
MAX16800ДаДа6,5…400,351:3016-TQFN
MAX16803ДаДа6,5…400,351:20016-TQFN
MAX16804/05/06ДаДа5,5…400,351:20020-TQFN
MAX16815ДаДа6,5…400,11:1006-TDFN
MAX16823ДаДа5,5…400,1/канал1:20016-TQFN; 16-TSSOP
MAX16824ДаДаДа6,5…280,15/канал1:500016-TSSOP
MAX16825ДаДаДа6,5…280,15/канал1:500016-TSSOP
MAX16828ДаДа6,5…400,21:1006-TDFN
MAX16835ДаДа6,5…400,351:8016-TQFN
MAX16836ДаДа6,5…400,351:8016-TQFN
MAX16839ДаДа5…400,11:2006-TDFN; 8-SO

Большинство из них имеют диапазон входных напряжений 6,5…40 В. Максимальные значения выходных токов составляют 0,1…0,35 А. Каждая микросхема из таблицы 1 допускает импульсное регулирование выходного тока (ШИМ-димминг)

Управлять яркостью светодиодов можно с помощью регулировки скважности импульсов, формируемых таймером ICM7555. Рекомендуемая для этого производителем схема приведена на рис

4. Параметры внешних компонентов для ШИМ-последовательности импульсов, формируемой таймером, приведены в соответствующей документации для ICM7555.

Рис. 4. Управление яркостью светодиодов с помощью таймера ICM7555

На рис.5 приведена рекомендуемая производителем схема для защиты мощных светодиодов от перегрева с помощью термистора NTC. Ток ограничения через светодиоды рассчитывается по формуле: ILED = V5]/R1, где V5- выходное напряжение 5В от встроенного стабилизатора напряжения. Такая несложная доработка схемы позволит исключить возможность выхода из строя дорогих светодиодов из-за недопустимо высокой температуры корпуса, ведь даже небольшое превышение максимально допустимой температуры резко сокращает их срок службы.

Рис. 5. Защита светодиодов от перегрева с помощью термистора

На рис. 6 показан способ увеличения выходного тока драйвера с помощью внешнего биполярного транзистора. Следует отметить, что в этом случае светодиоды подключаются между входом источника питания и коллектором биполярного транзистора, а это не всегда удобно.

Рис. 6. Увеличение тока драйвера с помощью внешнего биполярного транзистора

Схема для увеличения выходного тока, показанная на рис. 7, свободна от этого недостатка. Катод нижнего по схеме светодиода подключается непосредственно к общему проводу, что в большинстве случаев гораздо предпочтительнее предыдущего варианта, показанного на рис. 6, когда на катоде нижнего светодиода всегда присутствует ненулевой потенциал. Большинство микросхем линейных драйверов из таблицы 1 допускают рассмотренные варианты увеличения выходного тока. В качестве примера на рисунках 6 и 7 приведена микросхема MAX16803.

Рис. 7. Параллельное включение двух драйверов для увеличения выходного тока

Что такое драйвер для светодиода и для чего он нужен?

Выражаясь по-научному, LED-драйвером называют электронное устройство, основным выходным параметром которого является стабилизированный ток. Именно ток, а не напряжение. Устройство со стабилизацией напряжения принято именовать «блоком питания» с указанием номинального выходного напряжения. Его используют для запитки светодиодных лент, модулей и LED-линеек. Но речь пойдет не о нём.

выхвых

К стабилизатору с разбросом напряжений на выходе 9-21 В и током 780 мА можно подключить от трех до шести светодиодов по 3 Вт каждый. Такой драйвер считается более универсальным, но имеет меньший КПД при включении с минимальной нагрузкой.

Немаловажным параметром светодиодного драйвера является мощность, которую он может отдать в нагрузку. Не стоит пытаться выжать из него максимум. Особенно это касается радиолюбителей, которые мастерят последовательно-параллельные цепочки из светодиодов с выравнивающими резисторами, а потом этой самодельной матрицей перегружают выходной транзистор стабилизатора.

Электронная часть драйвера для светодиода зависит от многих факторов:

  • входных и выходных параметров;
  • класса защиты;
  • применяемой элементной базы;
  • производителя.

Современные драйверы для светодиодов изготавливают по принципу ШИМ-преобразования и с помощью специализированных микросхем. Широтно-импульсные преобразователи состоят из импульсного трансформатора и схемы стабилизации тока. Они питаются от сети 220 В, имеют высокий КПД и защиту от короткого замыкания и перегрузки.

Драйверы на базе одной микросхемы более компактны, так как рассчитаны на питание от низковольтного источника постоянного тока. Они также обладают высоким КПД, но их надёжность ниже из-за упрощенной электронной схемы. Такие устройства очень востребованы при светодиодном тюнинге автомобиля. В качестве примера можно назвать ИМС PT4115, о готовом схемотехническом решении на основе этой микросхемы можно прочесть в данной статье.

И четвертая лампочка — свеча на ветру

Тот же Feron, но правда уже теперь тёплая и она идёт под названием как «свеча на ветру».

Многие думают что это мерцающая свеча со светом как у настоящей свечи на ветру. Но нет, это просто колба дополненная хвостиком, которая светит точно также ровным светом как и обычная.

По размерам она обычно чуть-чуть длиннее. Замерять не будем, и на коробке видно, что размеры в 110мм и 142мм соответсвтенно (за счет хвостика). А диаметр такой же.

Статья по теме: Как выбрать шторы или занавески для дачи

Драйвер тут внутри тоже получше и светит лампа один в один, как накаливания. Мощность те же самые 3,8Вт, коэффициент пульсации в пределах нормы — 1%.

Напомню, что всё что до 5% — неплохо, и очень даже хорошо.

Так что лампы вроде бы одного и того же производителя, а такие разные (я имею в виду по пульсации и по мощностным показателям). Так некоторые были с явно завышенными заявленными показателями в 7Вт, где реально было 4Вт. Так что ориентируйтесь на количество нитей. Одна нить — 1Вт, примерно.

Поделитесь в социальных сетях:FacebookTwitterВКонтакте
Напишите комментарий