Правило левой руки: применение правила Буравчика, формулы, примеры задач

Действие магнитного поля на ток. Правило левой руки.

Поместим между полюсами магнита проводник, по кото­рому протекает постоянный электрический ток. Мы тотчас же заметим, что проводник будет выталкиваться полем магнита из междуполюсного пространства.

Объяснить это можно следующим образом. Вокруг провод­ника с током (Рисунок 1.) образуется собственное магнитное поле, силовые линии которого по одну сторону проводника направ­лены так же, как и силовые линии магнита, а по другую сто­рону проводника — в противопо­ложную сторону. Вследствие это­го с одной стороны проводника (на рисунке 1 сверху) маг­нитное поле оказывается сгущен­ным, а с другой его стороны (на рисунке 1 снизу) — разрежен­ным. Поэтому проводник испыты­вает силу, давящую на него вниз. И если проводник не закреплен, то он будет перемещаться.

Рисунок 1. Действие магнитного поля на ток.

Правило левой руки

Для быстрого определения направления движения провод­ника с током в, магнитном поле существует так называемое правило левой руки (рисунок 2.).

Рисунок 2. Правило левой руки.

Правило левой руки состоит в следую­щем: если поместить левую руку между полюсами маг­нита так, чтобы магнитные силовые линии входили в ладонь, а четыре пальца ру­ки совпадали с направлением тока в проводнике, то боль­шой палец покажет направ­ление движения проводника.

Итак, на проводник, по которому протекает электри­ческий ток, действует сила, стремящаяся перемещать его перпендикулярно магнитным силовым линиям. Опытным путем можно определить величину этой силы. Оказы­вается, что сила, с которой магнитное поле действует на проводник с током, прямо пропорциональна силе тока в проводнике и длине той части проводника, которая нахо­дится в магнитном поле (рисунок 3 слева).

Это правило справедливо, если проводник расположен под прямым углом к магнитным силовым линиям.

Рисунок 3. Сила взаимодействия магнитного поля и тока.

Если же проводник расположен не под прямым углом к магнитным силовым линиям, а, например, так, как изобра­жено на рисунке 3 справо, то сила, действующая на проводник, будет пропорциональна силе тока в проводнике и длине проекции части проводника, находящейся в магнитном поле, на плос­кость, перпендикулярную магнитным силовым ли­ниям. Отсюда следует, что если проводник паралле­лен магнитным силовым линиям, то сила, дейст­вующая на него, равна нулю. Если же проводник перпендикулярен направ­лению магнитных силовых линий, то сила, действую­щая на него, достигает наибольшей величины.

Сила, действующая на проводник с током, зави­сит еще и от магнитной индукции. Чем гуще рас­положены магнитные си­ловые линии, тем больше сила, действующая на проводник с током.

Подводя итог всему изложенному выше, мы можем действие магнитного поля на проводник с током выразить следующим правилом:

Сила, действующая на проводник с током, прямо пропорциональна магнитной индукции, силе тока в проводнике и длине проекции части проводника, находящейся в магнитном поле, на плоскость, перпендикулярную маг­нитному потоку.

Необходимо отметить, что действие магнитного поля на ток не зависит ни от вещества проводника, ни от его сечения. Дей­ствие магнитного поля на ток можно наблюдать даже при от­сутствии проводника, пропуская, например, между полюсами магнита поток быстро несущихся электронов.

Действие магнитного поля на ток широко используется в науке и технике. На использовании этого действия основано устройство электродвигателей, превращающих электрическую энергию в механическую, устройство магнитоэлектрических приборов для измерения напряжения и силы тока, электроди­намических громкоговорителей, превращающих электрические колебания в звук, специальных радиоламп — магнетронов, катодно-лучевых трубок и т. д. Действием магнитного поля на ток пользуются для измерения массы и заряда электрона и даже для изучения строения вещества.

Похожие материалы:

  • Магнитное поле тока. Магнитные силовые линии
  • Напряженность магнитного поля
  • Магнитная индукция
  • Электромагнитная индукция
  • Правило правой руки
  • Взаимоиндукция
  • Самоиндукция
  • ЭДС самоиндукции: основные послулаты
  • Постоянные магниты

Комментарии

Громова Ева 27.02.2018 18:58 Спасибо большое за статью!

Цитировать

асаев антон 04.09.2014 04:56 спасибо создателю сайта

Цитировать

Обновить список комментариев

Правило буравчика для магнитных полей

Речь шла о постоянных магнитах. У них все всегда понятно: где какой полюс и куда направлены линии магнитного поля — от северного полюса к южному. Но магнитное поле возникает и вокруг проводников, по которым течет ток. Просто оно слабое, так что даже если поднести два участка, по которым течет ток, особого притяжения или отталкивания мы не ощутим. Чтобы создать сильное электромагнитное поле, проводник накручивают вокруг какого-то сердечника. Это изделие называют соленоидом. Когда по нему течет ток, создается ощутимое магнитное поле. Но как направлены линии магнитного поля в электромагнитах? Где у них северный, где южный полюс? Вот это и выясняют с помощью правила буравчика.

Буравчик можно себе представить как обычный штопор с ручкой-перекладиной и витками, накрученными вправо. Чтобы закручивать такой штопор, ручку надо вращать вправо — по часовой стрелке. При этом острие штопора/буравчика продвигается вниз. Чтобы выкручивать его, надо рукоятку вращать влево — против часовой стрелки. Острие при этом движется вверх.

Правило буравчика для магнитного поля

С движением острия буравчика и направлением вращения рукоятки и связано определение направление магнитного поля. Вот как звучит правило буравчика (еще называют правило винта):

С ровными проводниками все просто. Представляете, вкручивать или выкручивать надо буравчик, получаете направление силовых линий. Если по условиям задачи есть только направление линий магнитного поля, при помощи правила буравчика можно установить направление тока. Для этого мысленно представляем, что ручка штопора крутится в указанном направлении. В зависимости от этого, определяем куда движется острие, а, значит, и куда течет ток.

Правило левой руки: что можно определить, воспользовавшись им

Не стоит путать правила левой руки и буравчика – они предназначены для совершенно разных целей. При помощи левой руки можно определить две силы, вернее, их направление. Это:

  • сила Лоренца;
  • сила Ампера.

Попробуем разобраться, как это работает.

Применение для силы Ампера

Правило левой руки для силы Ампера: в чём оно заключается

Расположим левую руку вдоль проводника так, чтобы пальцы были направлены в сторону протекания тока. Большой палец будет указывать в сторону вектора силы Ампера, а в направлении руки, между большим и указательным пальцем будет направлен вектор магнитного поля. Это и будет правило левой руки для силы ампера, формула которой выглядит так:

Правило левой руки для силы Лоренца: отличия от предыдущего

Располагаем три пальца левой руки (большой, указательный и средний) так, чтобы они находились под прямым углом друг к другу. Большой палец, направленный в этом случае в сторону, укажет направление силы Лоренца, указательный (направлен вниз) – направление магнитного поля (от северного полюса к южному), а средний, расположенный перпендикулярно в сторону от большого, – направление тока в проводнике.

Применение для силы Лоренца

Формулу расчёта силы Лоренца можно увидеть на рисунке ниже.

Главное правило

Рассмотренный нами пример является частным случаем алгоритма буравчика. Существует несколько вариантов формулировок правила, применяемых в различных ситуациях.

Общая, или главная формулировка, позволяет распространить данное правило на все случаи. Это вариант мнемонического правила, используемый для определения ориентации результирующей векторного произведения, называемого аксиальным вектором, а также для выбора связанного с этими векторами правого базиса (трёхмерной системы координат), что позволяет определить знак аксиального вектора.

Главное правило позволяет определить направление в пространстве аксиальных векторов, важных для вычислений:

  • угловой скорости;
  • параметров индукционного тока;
  • магнитной индукции.

Хотя ориентация аксиального вектора является условной, она важна для расчётов: придерживаясь принятого алгоритма выбора, легче производить вычисления, без риска перепутать знаки.

Во многих случаях применяют специальные формулировки, хорошо описывающие частные случаи в конкретной ситуации.

Правило левой руки

Правилом этой руки возможно вычислить направленность силы воздействия магнитного контура на заряженные элементарные составляющие атома плюсовой и минусовой полярности.

Возможно определить и направление тока, если доступна информация о траекториях вращения магнитного контура и действующей на проводник энергии. Определяется и направление магнитного контура в случае известности траектории движения силы и тока. Ну и можно выяснить знак заряда нестатичной частицы.

Это правило звучит следующим образом: расположив лицевую часть кисти соответствующей руки, чтобы воображаемый контур магнитного поля направлялись в нее под прямым углом, а пальцы, за исключением большого, направив в сторону движения тока, можно определить траекторию силы, воздействующая на этот провод при помощи перпендикулярно отодвинутого большого пальца. Сила, оказывающая воздействие на проводник, носит имя Мари Ампера, обнаружившего ее в 1820 году.

Использование правила правой руки в электродинамике

Если в магнитном поле подвесить на тонком и гибком проводе рамку с током, то она будет поворачиваться и расположится определенным образом. Аналогично поведение магнитной стрелки. Это свидетельствует о векторном характере физической величины, характеризующей магнитное поле. При этом направление этого вектора будет связано с ориентацией рамки и стрелки. Физической векторной величиной, которая характеризует магнитное поле, стал вектор магнитной индукции ($\vec{B}$).

Готовые работы на аналогичную тему

  • Курсовая работа Правило левой и правой руки для магнитного поля 490 руб.
  • Реферат Правило левой и правой руки для магнитного поля 270 руб.
  • Контрольная работа Правило левой и правой руки для магнитного поля 220 руб.

Получить выполненную работу или консультацию специалиста по вашему учебному проекту Узнать стоимость Это один из главных параметров, описывающих состояние магнитного поля, поэтому необходимо уметь находить его величину и, конечно, направление.

Для определения направления вектора магнитной индукции используют:

  • правило правого винта или
  • правило правой руки.

Направлением вектора магнитной индукции, в месте локализации рамки с током, считают направление положительного перпендикуляра ($\vec{n}$) к этой рамке. Положительная нормаль ($\vec{n}$) будет иметь направление такое же, как направление поступательного перемещения правого винта, если его головку вращать по току в рамке (рис.1 (a)).

Рисунок 1. Определение направления вектора магнитной индукции. Автор24 — интернет-биржа студенческих работ

Так, обладая пробной рамкой с током, помещая ее в исследуемое поле, давая ей свободно вращаться в нем, можно определить, как направлен вектор магнитной индукции в каждой точке поля. Необходимо только дать рамке прийти в положение равновесия, затем использовать правило правого винта.

Лень читать?

Задай вопрос специалистам и получи ответ уже через 15 минут!

Задать вопрос

Теперь обратимся к правилу правой руки. Сожмем правую руку в неплотный кулак (рис.2). Отогнем большой палец на 90°. Руку разместим так, чтобы большой палец указывал направление течения тока, тогда согнутые остальные четыре пальца укажут направление линий магнитной индукции поля, которое создает ток. А мы помним, что касательная в каждой точке поля к силовой линии (линии магнитной индукции) указывает направление $\vec{B}$.

Рисунок 2. Правило правой руки. Автор24 — интернет-биржа студенческих работ

Рассмотрим соленоид. Обхватим правой ладонью его так, чтобы четыре пальца совпали с направлением тока в нем, тогда отогнутый на девяносто градусов палец укажет, как направлено магнитное поле, создаваемое у него внутри.

Нам известно, что если в магнитном поле перемещать проводник, то в этом проводнике будет возникать ток индукции. Правило правой руки можно использовать для определения направления течения тока индукции в таких проводниках. При этом:

  • линии индукции магнитного поля должны входить в открытую ладонь правой руки,
  • палец этой руки отогнуть на девяносто градусов, и направить по скорости перемещения проводника,
  • вытянутые четыре пальца будут указывать, как направлен ток индукции.

Правилом правой руки можно воспользоваться при определении направления ЭДС индукции в контуре:

Согнутыми четырьмя пальцами правой руки охватить контур, в котором индуцируется ЭДС при изменении магнитного потока, отогнуть на девяносто градусов большой палец этой руки и направить его по направлению магнитного потока при его увеличении (или против направления магнитного потока при его уменьшении), тогда согнутые пальцы укажут на направление противоположное ЭДС.

Связь магнитного поля с правилами

В этой части публикации рассматриваются электрические величины. Поэтому следует напомнить о направлении течения тока в проводке – от «плюса» источника питания к «минусу». От контрольной точки с большим потенциалом (ϕ1=10 B) – к месту измерения с относительно меньшим (ϕ1= 5 B).


Кольцевая проводящая конструкция

На иллюстрации представлена кольцевая конструкция. Для уточнения характеристик системы в соответствии с базовыми правилами винт вкручивают с учетом реального направления силовых линий. Вращение рукоятки соответствует току в проводе, подключенному к источнику питания.


Пояснение правила

В этом примере необходимо выяснить направление вектора (В) магнитной индукции и соответствующую конфигурацию линий силового поля. Для проверки сжимают руку в кулак. Один палец ставят вертикально – известный жест «Класс!». Он будет соответствовать движению тока. Вектор, обозначающий магнитное поле, совпадает с положением четырех сжатых пальцев.

Важно! Нельзя прикасаться к проводнику под напряжением при проведении эксперимента, чтобы исключить поражение электротоком. Для наглядности опыт можно повторить с железными опилками. Гранулы рассыпают на плоской поверхности

Допустимо использование листа картона, другого материала с нейтральными по отношению к электромагнитным полям свойствами. В центре перпендикулярно устанавливают провод. После подключения к источнику тока можно наблюдать распределение полос, которое соответствует линиям созданного силового поля

Гранулы рассыпают на плоской поверхности. Допустимо использование листа картона, другого материала с нейтральными по отношению к электромагнитным полям свойствами. В центре перпендикулярно устанавливают провод. После подключения к источнику тока можно наблюдать распределение полос, которое соответствует линиям созданного силового поля

Для наглядности опыт можно повторить с железными опилками. Гранулы рассыпают на плоской поверхности. Допустимо использование листа картона, другого материала с нейтральными по отношению к электромагнитным полям свойствами. В центре перпендикулярно устанавливают провод. После подключения к источнику тока можно наблюдать распределение полос, которое соответствует линиям созданного силового поля.

К сведению. По рассмотренной схеме определяют полюса катушки, подключенной к источнику питания. Пользуются стандартным алгоритмом ППР. Отогнутый большой палец будет показывать на северный полюс.

Правила левой и правой руки

Правило правой руки – правило, использующееся для определения вектора магнитной индукции поля.

Данное правило также имеет названия «правило буравчика» и «правило винта», из-за схожести принципа действия. Широко распространено в физике, так как позволяет без применения специальных приборов или вычислений определить важнейшие параметры – угловую скорость, момент сил, момент импульса. В электродинамике данный способ позволяет определить вектор магнитной индукции.

Правило буравчика

Правило буравчика или винта: если ладони правой руки поставить так, чтобы она совпадала с направлением тока в изучаемом проводнике, то поступательное вращение ручки буравчика (большого пальца ладони) укажет непосредственно вектор магнитной индукции.

Иными словами, необходимо правой рукой как будто вкручивать бур или штопор, чтобы определить вектор. Особых сложностей в освоении данного правила нет.

Правило правой руки

Есть ещё одна разновидность данного правила. Чаще всего данный способ называется просто «правилом правой руки».

Оно звучит следующим образом: чтобы определить направление линий индукции создаваемого магнитного поля, необходимо рукой взять проводник так, чтобы оставленный на 90о большой палец показал направление тока, протекающего через него.

Есть аналогичный вариант и для соленоида.

В данном случае следует обхватить прибор так, чтобы пальцы ладони совпадали с направлением тока в витках. Оттопыренный большой палец в данном случае покажет, откуда выходят линии магнитного поля. 

Правило правой руки для движущегося проводника

Поможет данное правило и в случае с движущимися в магнитном поле проводниками. Только здесь необходимо действовать несколько по-другому.

Открытая ладонь правой руки должна располагаться так, чтобы силовые линии поля входили в неё перпендикулярно. Вытянутый большой палец должен указывать на направление движения проводника. При таком расположении вытянутые пальцы совпадут с направлением индукционного тока.

Как мы видим, количество ситуаций, когда данное правило реально помогает, достаточно велико.

Первое правило левой руки

Необходимо поставить левую ладонь таким образом, чтобы линии индукции поля входили в неё под прямым углом (перпендикулярно). Четыре вытянутых пальца ладони должны совпадать с направлением электрического тока в проводнике. В этом случае отставленный большой палец левой ладони покажет направление действующей на проводник силы.

На практике данный способ позволяет определить направление, куда начнёт отклоняться проводник с проходящим по нему электрическим током, помещённый между двумя магнитами.

Второе правило левой руки

Есть и другие ситуации, когда можно воспользоваться правилом левой руки. Вчастности для определения сил при движущемся заряде и неподвижном магните.

Другое правило левой руки гласит: Ладонь левой руки следует расположить таким образом, чтобы в неё перпендикулярно входили линии индукции созданного магнитного поля.

Положение четырёх вытянутых пальцев зависит от направления электрического тока (по движению положительно заряженных частиц, либо против отрицательных).

Обнаружение МП по его действию на эл. ток. Правило левой руки

Поскольку магнитное поле проводника с током действует с определённой силой на магнит, то естественно предположить, что со стороны магнитного поля магнита на проводник с током также должна действовать какая-то сила. Рассмотрим более подробно действие магнитного поля на проводник с током и попытаемся подтвердить или опровергнуть высказанное предположение.

Для этого соберём цепь, состоящую из источника тока, ключа, трёхсторонней рамки, реостата и подковообразного магнита, закреплённого в штативе. Рамку подвесим на крючках так, чтобы она могла свободно вращаться, и поместим в магнитное поле, созданное подковообразным магнитом. Присоединим рамку к источнику тока, последовательно с реостатом и ключом. При разомкнутой цепи действия со стороны магнитного поля магнита на рамку не наблюдается. Если же цепь замкнуть, то проводник приходит в движение — он втягивается в пространство между полюсами дугообразного магнита.

Следовательно, магнитное поле действует на рамку с током с некоторой силой

, отклоняющей её от первоначального положения.

Раз магнитное поле способно оказывать действие на проводник с током, то это действие может быть использовано для обнаружения магнитного поля в данной области пространства.

Кто-то из вас скажет, что зачем столько сложностей, если магнитное поле можно обнаружить с помощью простого компаса.

Да, с помощью компаса проще, но вспомните гипотезу Ампера: внутри каждой молекулы вещества циркулируют кольцевые электрические токи.

Поэтому действие магнитного поля на стрелку компаса сводится к действию поля на элементарные электрические токи, которые циркулируют в атомах и молекулах вещества, из которого изготовлена магнитная стрелка.

Таким образом, магнитное поле создаётся электрическим током и обнаруживается по его действию на электрический ток.

Но вернёмся к нашему опыту. Давайте поменяем направление тока в цепи. Замкнув её увидим, что проводник отклонился в противоположную сторону.

Значит, вместе с током изменилось и направление действующей на рамку силы.

Если теперь поменять местами полюсы магнита (то есть изменить направление магнитных линий), то мы увидим, как рамка с током вновь втягивается в пространство между полюсами магнита.

Значит, направление тока в проводнике, направление линий магнитного поля и направление силы, действующей на проводник с током, связаны между собой.

Из курса физики восьмого класса вы знаете, что сила, с которой магнитное поле действует на помещённый в него проводник с током, называется силой Ампера,

в честь французского учёного Андре-Мари Ампера.

Направление силы Ампера можно определить с помощью правила левой руки: если левую руку расположить так, чтобы линии магнитного поля входили в ладонь, а четыре пальца были направлены по направлению тока в проводнике, то отогнутый на девяносто градусов большой палец покажет направление действующей на проводник силы.

При использовании данного правила не забывайте о том, что за направление тока в цепи принято направление в котором движутся или могли бы двигаться положительно заряженные частицы.

С помощью правила левой руки также определяют и направление силы, действующую на отдельную заряженную частицу, движущуюся в магнитном поле. Для самого простого случая, то есть когда частица движется перпендикулярно линиям магнитного поля, это правило звучит так: если левую руку расположить так, чтобы линии магнитного поля входили в ладонь перпендикулярно к ней, а четыре пальца были направлены по движению положительно заряженной частицы (или против движения отрицательно заряженной), то отставленный на девяносто градусов большой палец покажет направление действующей на частицу силы.

Обратим внимание ещё на один важный момент: магнитное поле не действует в случаях, если прямолинейный проводник с током или скорость движущейся заряженной частицы параллельны линиям магнитного поля или совпадают с ними

Полезные сведения и советы

  1. Общепринято считать, что направление тока указывает в сторону от плюса к минусу. На самом деле, в проводнике упорядоченное перемещение электронов направлено от негативного полюса к позитивному. Поэтому, если бы перед вами стояла задача вычисления силы Лоренца для отдельного электрона в проводнике, следовало бы учитывать данное обстоятельство.
  2. По умолчанию мы рассматриваем винт (буравчик, штопор) с правой резьбой. Однако не следует забывать о существовании винтов с левой резьбой.
  3. При использовании правила часовой стрелки мы принимаем условие о том, что стрелки совершают движение слева направо. Известно, что в бывшем СССР производились часы с обратным ходом часового механизма. Возможно, такие модели существуют до сегодняшнего дня.

Полезно знать, что при вращении буравчика по ходу вращения тела, траектория его ввинчивания совпадёт с направлением угловой скорости.

Как связано магнитное поле с Буравчиком и руками

Рассматривая движение полей токовой и магнитной природы, можно легко проследить взаимную связь правила Буравчика с канонами правой и левой руки. Для более качественного сравнения этих понятий, следует рассмотреть, что они представляют собой по отдельности.

Закон Буравчика точно устанавливает направленность напряженности, вызываемой магнитными полями. При этом само поле должно размещаться в прямом направлении по отношению к проводящему материалу с электротоком.

Для более полного представления берется штопор с правой резьбой и ввинчивается по часовой стрелочке в сторону протекания тока. Направленность магнетических полей соответствует правостороннему движению штопорной рукоятки.

Правило правой руки может рассматриваться в двух вариантах. В одном из них пальцы, согнутые в кулак, охватывают неподвижный токопроводник. Они обозначают, в какую сторону смотрит вектор магнитных линий, который, как и у рукоятки Буравчика, будет по ходу часовой стрелки. Самый крупный палец отступает на 90º и показывает, в какую сторону движется ток.

Если же токопровод движется, то правая рука размещается иным способом. Ладонь устанавливается между северным и южным полюсами так, чтобы она была в перпендикулярности с силовыми линиями, проходящими через нее. Крупный палец фиксируется в вертикальном положении и показывает в сторону направленного движения проводника. Оставшиеся пальцы, протянутые вперед, смотрят в ту же сторону, что и индукционный ток. Эта установка нашла свое применение в расчетах катушечных соленоидов, оказывающих воздействие на физические свойства тока.

Отделяя друг от друга правило правой и левой руки, их физика показывает, что второй вариант, используемый в расчетах, действует по-другому. Левая ладошка размещается в таком положении, чтобы четыре пальца были направлены в сторону тока, продвигающегося по проводнику. Магнитные линии, перемещаясь от одного полюса к другому, заходят в ладошку под 90 градусов. Оттопыренный крупный палец смотрит в ту же сторону, что и сила, воздействующая на токопроводник.

Поделитесь в социальных сетях:FacebookTwitterВКонтакте
Напишите комментарий