В чём отличие проводников от диэлектриков, их свойства и сфера применения

Зависимость сопротивления проводника от частоты тока

При воздействии электрического тока индукция магнитного поля происходит внутри прямолинейного проводника и в окружающем его пространстве. Магнитные линии образуют концентрические окружности.


Распределение переменного тока по сечению

Что такое электрическое сопротивление

Если проводник с током условно разбить на несколько параллельных друг другу нитей тока, то можно установить, что, чем ближе токовая нить находится к оси проводника, тем больший замыкающийся внутри магнитный поток её охватывает. Индуктивность нити и индуктивное сопротивление находятся в пропорциональной зависимости от магнитного потока, с нею связанного.

В связи с этим в нитях с переменным током, находящихся внутри проводящего вещества, возникает большее индуктивное сопротивление, чем в нитях, находящихся снаружи. Образуется неравномерность тока по сечению, возрастающая от оси к поверхности проводника, чем и объясняется увеличение сопротивления проводников переменному току. Это явление называется поверхностным эффектом.

Из-за неравномерного распределения плотности тока происходит увеличение сопротивления проводника. При небольшой частоте в 50 Гц и малом сечении медного провода явление поверхностного эффекта почти незаметно. При значительном увеличении частоты и сечения проводника из железа это явление будет более активным.

Обратите внимание! Чем выше частота тока в цепи, тем ближе к поверхности проводника находятся электрические заряды, и тем больше возрастает его сопротивление

Отличие кабеля от провода

Какое же у этих изделий сходство или различие? Визуально они очень похожи, но по документации эти изделия проходят под разными наименованиями – «провод» и «кабель». А если заглянуть в строительную смету, то там четко видно, что провод стоит дешевле, чем кабель.

В различной спецлитературе, учебниках и справочниках даются определения этим понятиям, но они довольно пространные. Зато в ТУ и ГОСТ есть характеристика изделий, относящихся к «проводу» или к «кабелю».

В ТУ зачастую можно найти лишь небольшие детали, по которым необходимо различать кабель и провод. Например, форма (плоская или круглая), толщина оболочки, изоляция, количество жил.

Если говорить о форме, то она не несет специфической нагрузке. От формы изделия зависит разве что удобство использования в конкретной ситуации. Определяющим фактом в делении на провод или кабель является спецификация. В ней указано конкретно, какое это изделие.

Слова « кабель» и «провод» часто используются в описаниях электропроводки и электрических сетей, когда имеется в виду проводник электрического тока. Может показаться, что эти два изделия – одно и тоже. Но между ними есть разница, которая будет описана ниже.

Что представляет собой провод

? В электротехнике так называют многожильный или одножильный проводник, который имеет легкую трубчатую изоляцию, либо вовсе ее не имеет.

Кабель представляет собой

систему изолированных проводников, которые для удобства монтажа и эксплуатации, а также для защиты от влияния окружающей среды и механических повреждений объединены в единую конструкцию. Для повышения безопасности использования электрических проводов, для облегчения их совместной прокладки, для обеспечения защиты при эксплуатации в сложных условиях электрические провода собирают вместе. На них «одевается» дополнительный слой изоляции. Кабель защищают броневым кожухом при необходимости.

Итак, провод – это одни проводник, а кабель – это две или более изолированные жилы, объединенные вместе. Помимо изоляции жил кабель имеет изоляционную оболочку. Если на двух или более проводниках нет никакой изоляции, то перед вами просто проводник, по классификации – это «провод», а не «кабель».

Все провода и кабели можно разделить на несколько категорий в зависимости от характеристик изделия, особенностей конструкции и материалов, используемых при изготовлении.

Провода делятся на две группы:

  1. — многожильный провод, например, ПВ-3 – гибкий провод из меди;
  2. — из сплошной проволоки (монолит), например, ПВ-1 – однопроволочный провод из меди.

От коэффициента гибкости и уровня сопротивления зависят требования к эксплуатации и применение провода. Одножильные твердые провода могут быть как без оболочки, «голыми», так и в оболочке. Благодаря своей конструкции такой тип провода предполагает уменьшение сопротивления. Если за цель ставится увеличение производительности на высоких частотах, то обычно прибегают к использованию подобных твердых проводников.

Первый тип провода представляет собой множество токопроводящих жил. Этот провод состоит из нескольких нитей медной проволоки, которые сплетены в единое целое. При внешних механических воздействиях, а также при частых перегибах такое строение провода помогает увеличить срок эксплуатации изделия и достичь существенной гибкости.

Виды и типы диэлектриков

Классификация диэлектриков довольна обширная. Тут встречаются жидкие, твердые и газообразные вещества. Далее они делятся по определенным признакам. Ниже приведена условная классификация диэлектриков с примерами в форме списка.

  • газообразные
  • — полярные
  • — неполярные (воздух, элегаз)

жидкие

  • — полярные (вода, аммиак)
  • — жидкие кристаллы

— неполярные (бензол, трансформаторное масло)
твердые

  • — центросимментричные
  • — аморфные
  • — смолы, битумы (эпоксидная смола)
  • — стекла
  • — неупорядоченные полимеры

— поликристаллы

  • — нерегулярные кристаллы
  • — керамика
  • — упорядоченные полимеры
  • — ситаллы

— монокристаллы

  • — молекулярные
  • — ковалентные
  • — ионные
  • — параэлектрики смещения
  • — параэлектрики „порядок-беспорядок”

— дипольные
— нецентросимментричные

  • — монокристаллы
  • — пироэлектрики
  • — сегнетоэлектрики смещения
  • — сегнетоэлектрики „порядок-беспорядок”
  • — линейные пироэлектрики

— пьезоэлектрики

  • — с водородными связями
  • — ковалентные
  • — ионные

— текстуры

  • — электронных дефектов
  • — ионных дефектов
  • — полярных молекул
  • — макродиполей
  • — сегнетоэлектрических доменов
  • — кристаллов в матрице

Если брать жидкие и газообразные диэлектрики, то основная классификация лежит в вопросе полярности. Разница в симметричности молекул. В полярных молекулы несимметричны, в неполярных — симметричны. Несимметричные молекулы называются диполями. В полярных жидкостях проводимость настолько велика, что их невозможно использовать в качестве изоляционных веществ. Поэтому для этих целей используют неполярные, тоже трансформаторное масло. А наличие полярных примесей даже в сотых долях значительно снижает планку пробоя и негативно сказывается на изоляционных свойствах неполярных диэлектриков.

кристаллы представляют собой нечто среднее между жидкостью и кристаллом, как следует из названия.

Еще популярным вопросом о свойствах и применении жидких диэлектриков будет следующий: вода — диэлектрик или проводник? В чистой дистиллированной воде отсутствуют примеси, которые могли бы вызвать протекание тока. Чистую воду можно создать в лабораторных, промышленных условиях. Эти условия сложны и трудновыполнимы для обычного человека. Есть простой способ проверить проводит ли дистиллированная вода ток.

Создать электрическую цепь (источник тока — провод — вода — провод — лампочка — другой провод — источник тока), в которой одним из участков для протекания тока будет сосуд с дистиллированной водой. При включении схемы в работу, лампочка не загорится — следовательно ток не проходит. Ну а если загорится, значит вода с примесями.

Поэтому любая вода, которую мы встречаем: из крана, в озере, в ванной — будет проводником за счет примесей, которые создают возможность для протекания тока. Не купайтесь в грозу, не работайте влажными руками с электричеством. Хотя чистая дистиллированная вода — полярный диэлектрик.

Для твердых диэлектриков классификация в основном лежит в вопросе активности и пассивности что ли. Если свойства постоянны, то диэлектрик используют в качестве изоляционного материала, то есть он пассивен. Если свойства меняются, в зависимости от внешних воздействий (тепло, давление), то этот диэлектрик применяют для других целей. Бумага является диэлектриком, если вода пропитана водой — то ток проводится и она проводник, если бумага пропитана трансформаторным маслом — то это диэлектрик.

Фольгой называют тонкую металлическую пластину, металл — как известно является проводником. В продаже имеется например ПВХ-фольга, тут слово фольга для наглядности, а слово ПВХ — для понимания смысла — ведь ПВХ это диэлектрик. Хотя в википедии — фольгой называется тонкий лист металла.

Аморфные жидкости

— это и смола, и стекло, и битум, и воск. При повышении температуры этот диэлектрик тает, это замороженные вещества — это дикие определения, которые характеризуют лишь одну грань правды.

Поликристаллы

— это, как бы сросшиеся кристаллы, объединенные в один кристалл. Например, соль.

Монокристалл

— это цельный кристалл, в отличие от вышеупомянутого поликристалла имеющий непрерывную кристаллическую решетку.

Пьезоэлектрики

— диэлектрики, у которых при механическом воздействии (растяжении-сжатии), возникает процесс ионизации. Применяется в зажигалках, детонаторах, УЗИ-обследовании.

Пироэлектрики

— при изменении температуры в этих диэлектриках происходит самопроизвольная поляризация. Также она происходит при механическом воздействии, то есть пироэлектрики являются еще и пьезоэлектриками, но не наоборот. Примерами служат янтарь и турмалин.

Что такое диэлектрик

Диэлектриками называют вещества, которые не проводят ток, или проводят, но очень плохо. В них нет свободных носителей зарядов, потому что связь частиц атома достаточно сильная, для образования свободных носителей, поэтому под воздействием электрического поля тока в диэлектрике не возникает.

Газ, стекло, керамика, фарфор, некоторые смолы, текстолит, карболит, дистиллированная вода, сухая древесина, резина – являются диэлектриками и не проводят электрический ток. В быту диэлектрики встречаются повсеместно, например, из них делаются корпуса электроприборов, электрические выключатели, корпуса вилок, розеток и прочее. В линиях электропередач изоляторы выполняются из диэлектриков.

Однако, при наличии определенных факторов, например повышенный уровень влажности, напряженность электрического поля выше допустимого значения и прочее – приводят к тому, что материал начинает терять свои диэлектрические функции и становится проводником. Иногда вы можете слышать фразы типа «пробой изолятора» — это и есть описанное выше явление.

Если сказать кратко, то основными свойствами диэлектрика в сфере электричества являются электроизоляционные. Именно способность препятствовать протеканию тока защищает человека от электротравматизма и прочих неприятностей. Основной характеристикой диэлектрика является электрическая прочность – величина равная напряжению его пробоя.

Упражнения

Упражнение №1

Почему заряженный электроскоп разряжается, если его шарика коснуться рукой?

Наше тело является проводником электричества. Когда мы касаемся шарика заряженного электроскопа, заряд (свободные электроны) переходит в наше тело. При нашем соприкосновении с полом и землей, заряд уйдет туда. Так происходит, если электроскоп заряжен отрицательно.

Если же электроскоп заряжен положительно, то коснувшись его, мы нейтрализуем заряд, сообщив ему некоторое количество электронов. Ведь, являясь проводником, в нашем теле имеется большое количество свободных электронов.

Упражнение №2

Почему стержень электроскопа изготавливают из металла?

Металлы — хорошие проводники. Металлический стержень может передавать заряд от шара к лепесткам.

Если сделать стержень из диэлектрика, то заряд передаваться не будет, электроскоп окажется нерабочим.

Упражнение №3

К шарику незаряженного электроскопа подносят тело, заряженное положительно, не касаясь его. Какой заряд возникнет на листочках электроскопа?

Обратите внимание, что тело не касается электроскопа. При его приближении на шаре образуется отрицательный заряд, а на лепестках — положительный

Электрическое поле положительно заряженного тела будет действовать на электроскоп, свободные электроны придут в движение. Силы притяжения между разноименными зарядами заставят их собраться на шаре. В другой части электроскопа (на лепестках) образуется недостаток электронов, образуется положительный заряд.

§ 5. Проводники и диэлектрики в электрическом поле

Как нам уже известно, проводник представляет собой тело, которое содержит большое число свободных электронов, заряды которых компенсируются положительными зарядами ядер атомов. Если металлический проводник поместить в электрическое поле (рис. 12), то под влиянием сил поля свободные электроны проводника придут в движение в сторону, противоположную направлению сил поля. В результате этого на одной стороне проводника возникает избыточный отрицательный заряд, а на другой стороне проводника – избыточный положительный заряд.

Рис. 12. Проводник в электрическом поле

Разделение зарядов в проводнике под влиянием внешнего электрического поля называется электризацией через влияние, или электростатической индукцией, а заряды на проводнике – индуцированными зарядами.

Индуцированные заряды проводника создают добавочное электрическое поле, направление которого противоположно внешнему полю.

Результирующее электрическое поле внутри проводника уменьшается, а вместе с ним уменьшаются силы, действующие на перераспределение зарядов. Движение зарядов в проводнике прекратится, когда напряженность поля, вызванного индуцированными зарядами проводника εп, станет равной напряженности внешнего поля εвн, а результирующая напряженность поля внутри проводника будет равна нулю.

Как было указано выше, диэлектрик отличается от проводника отсутствием свободных электронов (точнее, весьма малым количеством свободных электронов). Электроны атомов диэлектрика прочно связаны с ядром атома.

Диэлектрик, внесенный в электрическое поле, так же как и проводник, электризуется через влияние. Однако между электризацией проводника и диэлектрика имеется существенная разница. Если в проводнике под влиянием сил электрического поля свободные электроны передвигаются по всему объему проводника, то в диэлектрике свободного перемещения электрических зарядов произойти не может. Но в пределах каждой молекулы диэлектрика возникает смещение положительного заряда вдоль направления электрического поля и отрицательного заряда в обратном направлении. В результате на поверхности диэлектрика возникнут электрические заряды.

Рассматриваемое явление называется поляризацией диэлектрика.

Различают диэлектрики двух классов. У диэлектриков первого класса молекула в нейтральном состоянии имеет положительный и отрицательный заряды, настолько близко расположенные один к другому, что действие их взаимно компенсируется. Под влиянием электрического поля положительные и отрицательные заряды в пределах молекулы несколько смещаются один относительно другого, образуя диполь* (рис. 13).

* ()

Рис. 13. Электрические заряды молекул диэлектрика: а – без внешнего поля, б – при наличии поля

У диэлектриков второго класса молекулы и в отсутствие электрического поля образуют диполи. Такие диэлектрики называются полярными. К ним относятся вода, аммиак, эфир, ацетон и т. д. У таких диэлектриков при отсутствии электрического поля диполи в пространстве расположены хаотически, и вследствие этого результирующее электрическое поле вокруг полярного диэлектрика равно нулю. Под действием внешнего электрического поля молекулы (а стало быть, и диполи) стремятся повернуться так, чтобы их оси совпали с направлением внешнего поля. С устранением электрического поля поляризация диэлектрика исчезает. Таким образом, поляризация представляет собой упругое смещение электрических зарядов в веществе диэлектрика.

При некоторой определенной величине напряженности электрического поля смещение зарядов достигает предельной величины, после чего происходит разрушение – пробой диэлектрика, в результате которого диэлектрик теряет свои изолирующие свойства и становится токопроводящим.

Напряженность электрического поля, при которой наступает пробой диэлектрика, называется пробивной напряженностью εпр. Напряженность поля, допускаемая при работе диэлектрика εдоп, должна быть меньше пробивной напряженности. Отношение

называется запасом прочности.

Приведем значения пробивной напряженности (в кв/мм) для некоторых диэлектриков:

Способы применения

Многие мои ученики думают, что диэлектрики применяются везде, где есть хоть какие-либо технологии, в каждой машине и приборе. Но это ошибочное мнение, потому что они используются исключительно в тех случаях, когда необходимо ограничить распространение электрического тока и обезопасить окружающую среду.

У диэлектриков есть большое количество способов применения. Например, жидкие непереводные вещи используются в создании разных видов масел, которые применяются в транспортных средствах, помогают укрепить промышленные детали и сделать электроизоляцию.

Газовые диэлектрики – это азот. Его применение очень широко. Многие используют азот для охлаждения промышленных приспособлений или химических смесей, а во многих печках он помогает избежать сильной газовой протечки, а также часто применяется в высокоточных переключателях. Их можно встретить в каждом доме, в котором присутствуют какие-либо газовые приборы.

Огромное спектр применения у твердых диэлектриков. Например, они применяются в проводах, электронных машинах, на станциях и так далее. Эти компоненты используются даже в космосе для поддержки кораблей. Твердые диэлектрики более практичные и многофункциональные, чем прочие агрегатные компоненты, вследствие этого их можно встретить намного чаще.

Диэлектрики есть везде, даже в вашем доме. Посмотрите на свои провода, электронные приборы и считок. Везде есть диэлектрики, которые позволяют приостановить продвижения тока и тем самым ограничить его воздействие на людей. Это очень важный компонент, без которого не смогло бы существовать половина приборов и машин.

Что такое проводник

Вещество, в котором присутствуют свободные носители зарядов, называют проводником. Движение свободных носителей называют тепловым. Основной характеристикой проводника является его сопротивление (R) или проводимость (G) – величина обратная сопротивлению.

G=1/R

Говоря простыми словами – проводник проводит ток.

К таким веществам можно отнести металлы, но если говорить о неметаллах то, например, углерод – отличный проводник, нашел применение в скользящих контактах, например, щетки электродвигателя. Влажная почва, растворы солей и кислот в воде, тело человека – тоже проводит ток, но их электропроводность зачастую меньше, чем у меди или алюминия, например.

Металлы являются отличными проводниками, как раз таки благодаря большому числу свободных носителей зарядов в их структуре. Под воздействием электрического поля заряды начинают перемещаться, а также перераспределяться, наблюдается явление электростатической индукции.

Многожильная жила или монолит — какой кабель лучше

Кабель с одной жилой обычно называют жестким, а гибким считается кабель с многопроволочной жилой. Гибкость кабеля тем выше, чем тоньше каждая проволочка, и чем больше число этих проволочек в жиле.

В зависимости от гибкости кабель делится на семь классов. Самый гибкий – 7-ой класс, а моножила относится к 1-ому классу. Кабель высокого класса гибкости стоит дороже.

Назначение жесткого кабеля – это укладка в грунт, заделка его в стены, в то время как гибкий кабель применяют для подключения электроприборов или подвижных механизмов. С точки зрения эксплуатации не имеет значения, какой кабель жесткий или гибкий. Что касается монтажа, то все зависит от предпочтений конкретного электрика.

Важно отметить, что концы гибкого кабеля, впоследствии вставляемые в выключатели или в розетку, обязательно необходимо пропаять и обжать специальными трубчатыми наконечниками – оконцевателями. Жесткий кабель не требует такой процедуры

Гибкий кабель более уместен для подключения осветительных устройств, так как эти устройства меняются довольно часто. Если взять для этих целей жесткий кабель, то при подключении нового электрооборудования велика вероятность, что он сломается.

Изоляция жил и оболочка кабеля

Двойная изоляция однозначно лучше. Как известно, срок службы кабеля в двойной изоляции составляет 30 лет, а в одинарной оболочке срок службы − до15 лет.

  • — для прокладки в сауне или в другом горячем помещении используются термостойкие кабели;
  • — маркировка «нг» означает, что кабель не поддерживает горение, но это не значит, что он термостойкий, то есть для высоких температур такой кабель не предназначен;
  • — есть кабели, которые могут «работать» при воздействии пламени в течение 120, 60 или 30 минут, на них вы увидите маркировку соответственно Е120, Е60 или Е30;
  • — кабель с полиэтиленовой оболочкой допустимо прокладывать как открытым способом, так и в грунте;
  • — кабель с ПВХ (поливинилхлорид) изоляцией можно прокладывать в кабельных каналах или в помещении.

В электричестве выделяют три основных группы материалов – это проводники, полупроводники и диэлектрики. Основным их отличием является возможность проводить ток. В этой статье мы рассмотрим, чем отличаются эти виды материалов и как они ведут себя в электрическом поле.

Формула определения длины проводника

Сопротивление тока: формула

Найти длину проводника можно путём непосредственного его измерения, например, рулеткой. Если предстоит подсчитать протяженность скрытой электропроводки в жилище, нужно учесть, что прокладывают её обычно горизонтально по стенам на расстоянии 15-20 см от потолка. Вертикально, под прямым углом, делают опуски на выключатели и розетки. Если проводник труднодоступен (заземляющие проводники), либо длина его велика, этот метод может оказаться сложно выполнимым.

Тогда длина проводника определяется другим способом. Для этого необходимо подготовить:

  • строительную рулетку,
  • тестер,
  • штангенциркуль,
  • таблицу электропроводности металлов.

Сначала нужно измерить сопротивление отдельных участков электропроводки. Далее определить сечение провода и материал, из которого он изготовлен. Обычно в быту используются алюминиевые или медные проводящие материалы.

Из формулы определения сопротивления (R = r * L * s) находят длину проводника по формуле:

L = R / r*s,

где:

  • L – длина провода,
  • R – его сопротивление,
  • r – удельное сопротивление материала (для меди составляет от 0,0154 до 0,0174 Ом, для алюминия – от 0,0262 до 0,0278 Ом),
  • s – площадь поперечного сечения провода.

Рассчитывают сечение провода:

S = π/4 * D2,

где:

  • π – число, приблизительно равное 3,14;
  • D – диаметр, замеряемый штангенциркулем.

Если необходимо найти длину провода, смотанного в бухту, определяют длину одного витка в метрах и умножают на число витков.

Если катушка круглого сечения, измеряют её диаметр, умножают на число π и на количество витков:

L = d * π * n,

где:

  • d – диаметр катушки,
  • n – число витков провода.

Проводник

Проводник

— вещество, имеющее свободные носители заряда (заряженные частицы), способные, в отличие от диэлектриков свободно перемещаться внутри этого вещества; их движением обусловлена возможность проводить электрический ток.

Кроме того, под термином «проводник» в электротехнике принято понимать провода или шины, предназначенные для соединений в электрических цепях.

Разновидности проводников

. В зависимости от природы и механизма электропроводности их подразделяют на проводники первого и второго рода.

К первым можно отнести вещества с электронной проводимостью, обусловленной движением электронов в цепи от отрицательного полюса положительному. Ко вторым — вещества с ионной проводимостью.

В качестве примера проводников первого рода можно привести все металлы (их сплавы) а также, каменный уголь, графит, сажа и пр. Проводники второго рода — это электролиты (р-ры кислот, щелочи и соли, находящиеся растворенном, расплавленном или кристаллическом состоянии) и т. д.

Основные параметры проводниковых материалов:

Удельная проводимость проводника (σ)

— величина, обратная удельному сопротивлению (р ). Является наиболее важным параметром, характеризующим свойства проводникового материала. Наиболее широко в электротехнике используются чистые металлы и сплавы металлов с низким удельным сопротивлением (р =0,015-0,108 ом*мм2/м).

Температурный коэффициент удельного сопротивления (αρ)

— показатель зависимости сопротивления проводника от его температуры. Так, при увеличении температуры увеличивается и удельное сопротивление большинства проводников.

Теплопроводность

— его способность передавать теплоту. Для количественной оценки данной характеристики существует коэффициент теплопроводности (γт ).

Ввиду того, что передача тепла в веществах осуществляется посредством электронов, коэффициент теплопроводности металлов, имеющих их наибольшее количество будет значительно превышать γт

диэлектриков. Так, с увеличением температуры вещества связано снижение его удельной проводимости и отношениеγт к его удельной проводимости будет увеличиваться.

Контактная разность потенциалов

— разность потенциалов между двумя находящимися в контакте проводниками с одинаковой температурой. Их соединение сопровождается обменом электронами — заряд проводника с большей работой выхода отрицательно, с меньшей — положительно.

Их зарядка будет происходить до уравновешивания потоков движущихся электронов в обоих направлениях и не произойдет уравнивание электрохимического потенциала в системе.

Работа выхода электронов из металла

— энергия, расходуемая на удаление электрона из поверхностного электронного слоя проводника.

Предел прочности при растяжении σρ и относительное удлинение перед разрывом Δl/l

— показатели, характеризующие механические свойства материала.

Кристаллическая решетка поможет разобраться

Сейчас в познании электрических диэлектриков нам поможет разобраться кристаллическая решетка. Для того, чтобы термины не казались нам непонятными, давайте их освежим в своей голове. Кристаллическая решетка — это группа таких точек, которые образуются в веществах (а точнее в кристаллах) под воздействием сдвигов (они, кстати, могут происходить из-за воздействия электрического поля. Отлично, вспомнили. Давайте теперь разбираться.

Как мы помним, в атоме, который в данный момент изолирован, энергия электронов не может принимать какие угодно значения. В таком состоянии энергия будет принимать четко обозначенные значение W1, W2, W3 и т.д. Вот, взгляните на график:

Конечно же, каждый из этих уровней будет немного смещен после того, как атомы войдут в состав твердой кристаллической решетки. В итоге зона, в которой будет концентрировать вся энергия будет общей для всей решетки.

Итак, в кристаллической решетке энергия электронов лежит в пределах четко определенных зон и все значения, которые находятся вне этой зоны, запрещены. Это мы поняли. Двигаемся дальше. По принципу Паули каждая зона может вместить в себя ограниченное количество электронов. Сначала электроны будут заполнять нижние уровни, а когда эти ряды заполняться полностью, они будут заполнять верхние ряды.

И вот теперь ключевая мысль, которую нужно понять, чтобы разобраться в том, почему те или иные вещества проводят электрический ток. Раз электроны постепенно заполняют ряды от нижнего к верхнему, то на самом верхнем ряду они либо заполнят этот ряд полностью, либо только частично.

Так вот, при частичном заполнении ряда электроны смогут свободно по нему перемещаться, а значит и будут проводить ток. Бинго! А вот в случае, если электроны все-таки заполнят верхний уровень, то при воздействии электрического поля никаких сдвигов не произойдет и, соответственно, такое вещество можно назвать диэлектриком.

Очень похожая ситуация происходит и с аморфными твердыми телами (ну например янтарь или полиэтилен). По определению, у таких веществ расположение атомов очень случайно, а зоны, общие для всего кристалла просто не могут существовать, а значит они тоже электрические диэлектрики.

Итак, начнем с проводника

Проводник — это материя, которая состоит из свободных носителей заряженных частиц. При движении этих частиц возникает тепловая энергия, поэтому ему дали название — тепловое движение.

Есть два основных параметра проводника — сопротивление, обозначается буквой R или же проводимость, обозначается буквой G. Проводимость это показатель противоположный сопротивлению — G=1/R.

Что же является проводником. Металлы — лучшие проводники, особенно медь и алюминий. Также проводниками являются солевые растворы, влажный грунт, углерод. Последний нашел широкое применение в работе со скользящими связями.

Примером такого применения являются щетки в электрическом двигателе. Человеческое тело — тоже проводник электрического тока. Но электропроводные свойства у вышеперечисленных материалов все же ниже, чем в металлах.

Сама структура металлов предполагает в себе огромное количество свободных заряженных частиц, что и делает их лучшими проводниками.

Когда металл попадает под действие электрических полей, то происходит процесс так называемой электроиндукции. То есть заряженные частицы начинают активно двигаться и распределятся.

Принцип работы

Движение свободных зарядов обусловливает электропроводность. Требование, чтобы в веществе существовало электрическое поле, может быть сведено к тому, чтобы электропроводность вещества была достаточно мала. Практически можно считать диэлектриком вещество, уд. сопротивление которого > 10 в 10 -й степени Q-см.

Термин диэлектрик является условным: когда вещество подвергается лишь кратковременному воздействию напряжения и поле в диэлектриках существует лишь кратковременно, они могут считаться вещества, обладающие значительно меньшим удельным сопротивлением, чем указано выше, например дестилированная вода. Наоборот, при длительно приложенном постоянном напряжении мы вынуждены в ряде случаев трактовать вещества с указанным выше уд. сопротивлением как проводники.

Все вещества независимо от агрегатного состояния построены из зарядов, связанных большими или меньшими силами взаимодействия. Чтобы вещество было диэлектриком, т. е..обладало малой электропроводностью, необходимо, чтобы заряды, ионы и электроны, из которых оно построено, при наложении поля не могли свободно перемещаться.

В изолированном атоме энергия электронов может иметь согласно требованиям волновой механики не любые, а лишь определенные дискретные значения W1, W2, W3,… (фигура, а). При соединении атомов в твердую кристаллическую решетку каждый из этих уровней несколько смещается и расщепляется на целый ряд тесно расположенных новых уровней, образующих зону, общую для всего кристалла (фигура, б).

В кристаллической решетке энергия электронов может иметь лишь значения, лежащие в пределах зон; значения же энергии, которые соответствуют промежуткам между зонами, для электронов запрещены. Каждая зона согласно принципу Паули может вместить лишь ограниченное количество электронов. Электроны будут стремиться расположиться на возможно более низких энергетических уровнях, однако нижняя зона не сможет их всех вместить, и они заполнят ряд зон.

Если при этом наиболее высокая из тех зон, в которых размещены электроны, будет заполнена ими лишь частично, то находящиеся в этой зоне электроны при наложении поля будут иметь возможность в пределах зоны свободно перемещаться и могут считаться свободными; данное вещество будет хорошо проводить ток (являться проводником). Если же эта наиболее высокая из занятых зон будет заполнена электронами полностью, то электроны не могут смещаться под влиянием поля и должны считаться связанными, — данное вещество является диэлектриком. В случае аморфных твердых веществ, характеризуемых беспорядочным расположением атомов, зоны, общие для всего кристалла, не могут образоваться, поэтому электроны будут лишены возможности перемещаться, и следовательно такое вещество окажется диэлектриком.

Помимо движения электронов необходимо учесть также движение атомов или ионов. Тепловое движение этих частиц будет заключаться в колебаниях около положения равновесия. В наличии окажется однако некоторое количество ионов, энергия теплового движения которых столь велика, что они могут преодолеть связывающие их силы. Эти ионы мы назовем условно «свободными». Такие ионы покинут свои места и перейдут на другие, где их потенциальная энергия, так же как и в местах, откуда они ушли, будет возможно малой. В случае диэлектрика, имеющих кристаллическую решетку с плотной упаковкой, местами, где могут находиться ионы в равновесном состоянии, являются узлы решетки. Перескоки ионов в таких материалах согласно Шоттки могут происходить лишь в том случае, когда некоторое количество узлов решетки с самого начала не занято ионами (в решетке имеются «дырки»). Тепловое движение в этом случае сводится к беспорядочным перескокам ионов с одних узлов решетки на другие.

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий