Расчет диаметра труб отопления
Определившись с количеством радиаторов и их тепловой мощностью, можно переходить к подбору размеров подводящих труб.
Прежде чем переходить к расчету диаметра труб, стоит затронуть тему выбора нужного материала. В системах с высоким давлением придется отказаться от применения пластиковых труб. Для систем отопления с максимальной температурой выше 90 °C предпочтительнее стальная или медная труба. Для систем с температурой теплоносителя ниже 80 °C можно выбрать металлопластиковую или полимерную трубу.
Чтобы нужное количество теплоты пришло в радиатор без задержки, следует подобрать диаметры подводящих труб радиаторов так, чтобы они соответствовали расходу воды, необходимому каждой отдельно взятой зоне.
Расчет диаметра труб отопления проводится по следующей формуле:
D = √(354 × (0,86 × Q ⁄ Δt°) ⁄ V), где:
D — диаметр трубопровода, мм.
Q — нагрузка на данный участок трубопровода, кВт.
Δt° — разница температур подачи и обратки, °C.
V — скорость теплоносителя, м⁄с.
Разница температур (Δt°) десятисекционного радиатора отопления между подачей и обраткой в зависимости от скорости потока обычно варьирует в пределах 10 — 20 °C.
Минимальным значением скорости теплоносителя (V) рекомендуется считать 0,2 — 0,25 м⁄с. На меньших скоростях начинается процесс выделения избыточного воздуха, содержащегося в теплоносителе. Верхний порог скорости теплоносителя 0,6 — 1,5 м⁄с. Такие скорости позволяют избежать возникновения гидравлических шумов в трубопроводах. Оптимальным значением скорости движения теплоносителя считается диапазон 0,3 — 0,7 м⁄с.
Пример расчета диаметра труб отопления по заданным параметрам
Исходные данные:
- Комната площадью 20 м², с высотой потолков 2,8 м.
- Дом кирпичный неутепленный. Коэффициент тепловых потерь строения примем 1,5.
- В комнате есть одно окно ПВХ с двойным стеклопакетом.
- На улице -18 °C, внутри планируется +20 °С. Разница 38 °С.
Решение:
В первую очередь определяем минимально необходимую тепловую мощность по ранее рассмотренной формуле Qт(кВт×ч) = V × ΔT × K ⁄ 860.
Получаем Qт = (20 м² × 2,8 м) × 38 °С × 1,5 ⁄ 860 = 3,71 кВт×ч = 3710 Вт×ч.
Теперь можно переходить к формуле D = √(354 × (0,86 × Q ⁄Δt°) ⁄ V). Δt° — разницу температур подачи и обратки примем 20°С. V — скорость теплоносителя примем 0,5 м⁄с.
Получаем D = √(354 × (0,86 × 3,71 кВт ⁄ 20 °С) ⁄ 0,5 м⁄с) = 10,6 мм. В данном случае рекомендуется выбрать трубу с внутренним диаметром 12 мм.
Таблица диаметров труб для отопления дома
Таблица расчета диаметра трубы для двухтрубной системы отопления с расчетными параметрами (Δt° = 20 °С, плотность воды 971 кг ⁄ м³, удельная теплоемкость воды 4,2 кДж ⁄ (кг × °С)):
Диаметр трубы внутренний, мм | Тепловой поток / расход воды | Скорость потока, м/с | ||||||||||
0,1 | 0,2 | 0,3 | 0,4 | 0,5 | 0,6 | 0,7 | 0,8 | 0,9 | 1,0 | 1,1 | ||
8 | ΔW, Вт Q, кг ⁄ час | 409 18 | 818 35 | 1226 53 | 1635 70 | 2044 88 | 2453 105 | 2861 123 | 3270 141 | 3679 158 | 4088 176 | 4496 193 |
10 | ΔW, ВтQ, кг ⁄ час | 639 27 | 1277 55 | 1916 82 | 2555 110 | 3193 137 | 3832 165 | 4471 192 | 5109 220 | 5748 247 | 6387 275 | 7025 302 |
12 | ΔW, ВтQ, кг ⁄ час | 920 40 | 1839 79 | 2759 119 | 3679 158 | 4598 198 | 5518 237 | 6438 277 | 728 316 | 8277 356 | 9197 395 | 10117 435 |
15 | ΔW, ВтQ, кг ⁄ час | 1437 62 | 2874 124 | 4311 185 | 5748 247 | 7185 309 | 8622 371 | 10059 433 | 11496 494 | 12933 556 | 14370 618 | 15807 680 |
20 | ΔW, ВтQ, кг ⁄ час | 2555 110 | 5109 220 | 7664 330 | 10219 439 | 12774 549 | 15328 659 | 17883 769 | 20438 879 | 22992 989 | 25547 1099 | 28102 1208 |
25 | ΔW, ВтQ, кг ⁄ час | 3992 172 | 7983 343 | 11975 515 | 15967 687 | 19959 858 | 23950 1030 | 27942 1202 | 31934 1373 | 35926 1545 | 39917 1716 | 43909 1999 |
32 | ΔW, ВтQ, кг ⁄ час | 6540 281 | 13080 562 | 19620 844 | 26160 1125 | 32700 1406 | 39240 1687 | 45780 1969 | 53220 2250 | 58860 2534 | 65401 2812 | 71941 3093 |
40 | ΔW, ВтQ, кг ⁄ час | 10219 439 | 20438 879 | 30656 1318 | 40875 1758 | 51094 2197 | 61343 2636 | 71532 3076 | 81751 3515 | 91969 3955 | 102188 4394 | 112407 4834 |
50 | ΔW, ВтQ, кг ⁄ час | 15967 687 | 31934 1373 | 47901 2060 | 63868 2746 | 79835 3433 | 95802 4120 | 111768 4806 | 127735 5493 | 143702 6179 | 159669 6866 | 175636 7552 |
70 | ΔW, ВтQ, кг ⁄ час | 31295 1346 | 62590 2691 | 93885 4037 | 125181 5383 | 156476 6729 | 187771 8074 | 219066 9420 | 250361 10766 | 281656 12111 | 312952 13457 | 344247 14803 |
100 | ΔW, ВтQ, кг ⁄ час | 63868 2746 | 127735 5493 | 191603 8239 | 255471 10985 | 319338 13732 | 383206 16478 | 447074 19224 | 510941 21971 | 574809 24717 | 638677 27463 | 702544 30210 |
На основании предыдущего примера и данной таблицы выберем диаметр трубы отопления. Нам известно, что минимально необходимая тепловая мощность для комнаты площадью 20 м² равна 3710 Вт × час. Смотрим таблицу и ищем ближайшее значение, которое соответствует рассчитанному тепловому потоку и оптимальной скорости движения жидкости. Получаем внутренний диаметр трубы 12 мм, который при скорости движения теплоносителя 0,5 м ⁄ с обеспечит расход 198 кг ⁄ час.
Расход теплоносителя через 1м.п. чугунных радиаторов
Справочник проектировщика «Внутренние санитарно-технические устройства» (И.Г. Староверов, 1975 г.), таблица 12.3, стр. 47 |
Определим расход теплоносителя через одну секцию чугунного радиатора кг/ч
35:10 = 3,5 кг/ч расход теплоносителя через одну секцию (G), где:
10 шт. – количество секций в 1 м.п. радиатора;
35 кг/ч – расход теплоносителя через 1м.п. радиатора.
Расход теплоносителя через 1м.п. отопительных приборов
Расчетная площадь нагревательной поверхности секционных радиаторов Fp в зависимости от числа секций в радиаторе | |||||
ЧислосекцийNi | Радиатор | ||||
М-140-АО | М-140 (М-140-А) | М-140-АО-300 | М-90 | РД-90с | |
Площадь нагревательной поверхности одной секции, экм | |||||
0,35 | 0,31 | 0,217 | 0,26 | 0,275 | |
2 | 0,84 | 0,76 | 0,59 | 0,67 | 0,70 |
3 | 1,18 | 1,07 | 0,80 | 0,93 | 0,97 |
4 | 1,52 | 1,37 | 1,01 | 1,18 | 1,25 |
5 | 1,84 | 1,67 | 1,22 | 1,43 | 1,50 |
6 | 2,16 | 1,98 | 1,43 | 1,68 | 1,73 |
7 | 2,54 | 2,26 | 1,64 | 1,93 | 2,01 |
8 | 2,82 | 2,52 | 1,85 | 2,19 | 2,28 |
9 | 3,15 | 2,83 | 2,06 | 2,44 | 2,56 |
10 | 3,49 | 3,1 | 2,27 | 2,69 | 2,80 |
11 | 3,82 | 3,39 | 2,47 | 2,94 | 3,05 |
12 | 4,12 | 3,68 | 2,68 | 3,19 | 3,30 |
13 | 4,45 | 3,96 | 2,89 | 3,45 | 3,57 |
14 | 4,77 | 4,26 | 3,10 | 3,70 | 3,86 |
15 | 5,08 | 4,58 | 3,31 | 3,95 | 4,06 |
16 | 5,42 | 4,82 | 3,52 | 4,20 | 4,32 |
17 | 5,73 | 5,09 | 3,73 | 4,45 | 4,54 |
18 | 6,05 | 5,39 | 3,94 | 4,71 | 4,80 |
19 | 6,37 | 5,67 | 4,15 | 4,96 | 5,07 |
20 | 6,70 | 5,96 | 4,36 | 5,21 | 5,33 |
21 | 7,01 | 6,24 | 4,57 | 5,46 | 5,59 |
22 | 7,34 | 6,58 | 4,78 | 5,71 | 5,85 |
23 | 7,65 | 6,81 | 4,99 | 5,97 | 6,11 |
24 | 7,99 | 7,10 | 5,20 | 6,22 | 6,37 |
24 | 8,31 | 7,38 | 5,41 | 6,47 | 6,57 |
Справочник проектировщика «Внутренние санитарно-технические устройства» (И.Г. Староверов, 1975 г.), таблица 12.13, стр. 67 |
Красным цветом выделены данные по радиаторам 1-го (7 секций), зеленым — 2-го (8 секций), синим — 3-го (9 секций) типов.
Определим расчетную формулу плотности теплового потока на 1 экм нагревательной поверхности отопительных чугунных радиаторов Gотн / Fp ≤ 7 или
Gотн / Fp ≥ 7
Радиаторы М-140-АО 7 секций (4 радиатора)
Gотн / Fp = (3,5 х 7) : 17,4 : 2,54 = 0,55
Итого: 0,55 < 7
Полученное значение меньше 7, дальнейший расчет выполним по формуле из таблицы ниже.
Вычислим теплопередачу чугунных радиаторов.
3,5 х 7 = 24,5 кг/ч расход воды в радиаторе
qэ = 1,89/φ ·∆tср1,32 = 1,89/1,05 х ((95,0 + 70,0):2 -20)1,32 = 422,5 Ккал/(ч·экм)
0,35х7 = 2,45 экм
422,5х2,45 х4 = 4140,5 Ккал/ч
Радиаторы М-140-АО 8 секций (1 радиатор)
Gотн / Fp = (3,5 х
Итого: 0,57 < 7
Полученное значение меньше 7, дальнейший расчет выполним по формуле из таблицы ниже.
Вычислим теплопередачу чугунных радиаторов.
3,5 х 8 = 28 кг/ч расход воды в радиаторе
qэ = 1,89/φ ·∆tср1,32 = 1,89/1,04 х ((95,0 + 70,0):2 -20)1,32 = 426,5 Ккал/(ч·экм)
0,35х8 = 2,8 экм
426,5х2,8 х1 = 1194,2 Ккал/ч
Радиаторы М-140-АО 9 секций (1 радиатор)
Gотн / Fp = (3,5 х 9) : 17,4 : 3,15 = 0,57
Итого: 0,57 < 7
Полученное значение меньше 7, дальнейший расчет выполним по формуле из таблицы ниже.
Вычислим теплопередачу чугунных радиаторов.
3,5 х 9 = 31,5 кг/ч расход воды в радиаторе
qэ = 1,89/φ ·∆tср1,32 = 1,89/1,04 х ((95,0 + 70,0):2 -20)1,32 = 426,5 Ккал/(ч·экм)
0,35х9 = 3,15 экм
426,5х3,15 х1= 1343,5 Ккал/ч
Суммарная тепловая нагрузка по радиаторам М-140-АО
Qр.от.= 4140,5+1194,2 +1343,5 =6678,2 Ккал/ч
Расчетная формула плотности теплового потока на 1 экм нагревательной поверхности отопительных приборов:
Справочник проектировщика «Внутренние санитарно-технические устройства» (И.Г. Староверов, 1975 г.), таблица 12.8, стр. 52 |
Посмотреть: тепловые нагрузки на отопление админ здания
Коэффициент φ, учитывающий расход воды в систему:
Справочник проектировщика «Внутренние санитарно-технические устройства» (И.Г. Староверов, 1975 г.), стр. 48 |
Точные расчеты тепловой нагрузки
Значение теплопроводности и сопротивление теплопередачи для строительных материалов
Но все же этот расчет оптимальной тепловой нагрузки на отопление не дает требуемую точность вычисления. Он не учитывает важнейший параметр – характеристики здания. Главной из них является сопротивление теплопередачи материал изготовления отдельных элементов дома – стен, окон, потолка и пола. Именно они определяют степень сохранения тепловой энергии, полученной от теплоносителя системы отопления.
Что же такое сопротивление теплопередачи (R )? Это величина, обратная теплопроводности (λ ) – возможности структуры материала передавать тепловую энергию. Т.е. чем больше значение теплопроводности – тем выше тепловые потери. Для расчета годовой нагрузки на отопление воспользоваться этой величиной нельзя, так как она не учитывает толщину материала (d ). Поэтому специалисты используют параметр сопротивление теплопередачи, который вычисляется по следующей формуле:
Расчет по стенам и окнам
Сопротивление теплопередачи стен жилых зданий
Существуют нормированные значения сопротивления теплопередачи стен, которые напрямую зависят от региона, где расположен дом.
В отличие от укрупненного расчета нагрузки на отопление сначала нужно вычислить сопротивление теплопередачи для наружных стен, окон, пола первого этажа и чердака. Возьмем за основу следующие характеристики дома:
- Площадь стен – 280 м². В нее включены окна – 40 м² ;
- Материал изготовления стен – полнотелый кирпич (λ=0.56 ). Толщина наружных стен – 0,36 м. Исходя из этого рассчитываем сопротивление телепередачи — R=0.36/0.56= 0,64 м²*С/Вт ;
- Для улучшения теплоизоляционных свойств был установлен наружный утеплитель – пенополистирол толщиной 100 мм. Для него λ=0,036. Соответственно R=0,1/0,036= 2,72 м²*С/Вт ;
- Общее значение R для наружных стен равно 0,64+2,72= 3,36 что является очень хорошим показателем теплоизоляции дома;
- Сопротивление теплопередачи окон — 0,75 м²*С/Вт (двойной стеклопакет с заполнением аргоном).
Фактически тепловые потери через стены составят:
(1/3,36)*240+(1/0.75)*40= 124 Вт при разнице температуры в 1°С
Температурные показатели возьмем такие же, как и для укрупненного вычисления нагрузки на отопление +22°С в помещении и -15°С на улице. Дальнейший расчет необходимо делать по следующей формуле:
Расчет по вентиляции
Затем необходимо вычислить потери через вентиляцию. Общий объем воздуха в здании составляет 480 м³. При этом его плотность примерно равна 1,24 кг/м³. Т.е. его масса равна 595 кг. В среднем за сутки (24 часа) происходит пятикратное обновление воздуха. В таком случае для вычисления максимальной часовой нагрузки для отопления нужно рассчитать тепловые потери на вентиляцию:
(480*40*5)/24= 4000 кДж или 1,11 кВт/час
Суммируя все полученные показатели можно найти общие тепловые потери дом:
Таким образом определяется точная максимальная тепловая нагрузка на отопление. Полученная величина напрямую зависит от температуры на улице. Поэтому для расчета годовой нагрузки на отопительную систему нужно учитывать изменение погодных условий. Если средняя температура в течение отопительного сезона составляет -7°С, то итоговая нагрузка на отопление будет равна:
(124*(22+7)+((480*(22+7)*5)/24))/3600)*24*150(дней отопительного сезона)=15843 кВт
Меняя температурные значения можно сделать точный расчет тепловой нагрузки для любой системы отопления.
К полученным результатам нужно прибавить значение тепловых потерь через крышу и пол. Это можно сделать поправочным коэффициентом 1,2 – 6,07*1,2=7,3 кВт/ч.
Полученная величина указывает на фактические затраты энергоносителя при работе системы. Существует несколько способов регулирования тепловой нагрузки отопления. Наиболее действенный из них – уменьшение температуры в комнатах, где нет постоянного присутствия жильцов. Это можно осуществить с помощью терморегуляторов и установленных датчиков температуры. Но при этом в здании должна быть установлена двухтрубная система отопления.
Для вычисления точного значения тепловых потерь можно воспользоваться специализированной программой Valtec. В видеоматериале показа пример работы с ней.
Анатолий Коневецкий, Крым, Ялта
Анатолий Коневецкий, Крым, Ялта
Уважаемая Ольга! Извините,что обращаюсь к Вам еще раз. Что-то у меня по Вашим формулам получается немыслимая тепловая нагрузка: Кир=0,01*(2*9,8*21,6*(1-0,83)+12,25)=0,84 Qот=1,626*25600*0,37*((22-(-6))*1,84*0,000001=0,793 Гкал/час По укрупненной формуле, приведенной выше, получается всего 0,149 Гкал/час. Не могу понять, в чем дело? Разъясните пожалуйста! Извините за беспокойство. Анатолий.
Анатолий Коневецкий, Крым, Ялта
Методики расчета тепловой нагрузки на отопление здания
Чтобы рассчитать необходимую тепловую нагрузку, данные о нормах температуры и влажности берут из ГОСТ и СНиП. Там же есть сведения о коэффициентах теплопередачи разных материалов и конструкций. При расчетах обязательно учитывают паспортные данные радиаторов, отопительного котла, другого оборудования.
В вычисления включают:
- поток тепловой энергии радиатора – максимальное значение;
- максимальный расход за 1 час при работе отопительной системы;
- тепловые затраты за сезон.
Приблизительное значение дает соотношение расчетных данных с площадью дома или комнат. Однако такой подход не учитывает конструкционные особенности здания.
Вычисление теплопотерь с использованием укрупненных показателей
Формула расчета теплопотерь Метод применяют, когда точные характеристики здания невозможно установить. Чтобы рассчитать тепловую нагрузку, используют формулу.
Qот= α*qо*V*(tв-tн.р); где:
- q° – удельный тепловой показатель строения по проекту или стандартной таблице. Для зданий разного назначения – жилой многоквартирный дом, гараж, лаборатория – он разный.
- а – поправочный коэффициент, разный для разных климатических зон.
- Vн – внешний объем строения, м³.
- Tвн и Tнро – температура внутри дома и снаружи.
Метод позволяет рассчитать показатели для всей постройки и для каждой зоны или комнаты. Однако формула не включает данные о теплопроводности материалов, из которых построен дом, а показатели для дерева, пенобетона и камня сильно отличаются.
Определение теплоотдачи отопительно-вентиляционного оборудования
Примерная мощность батарей исходя из площади комнат Чтобы получить более достоверный результат, используют расчет по стенам и окнам и дополнительно вычисляют тепловую нагрузку вентиляции. Расчеты производят в несколько этапов:
- рассчитывают площадь стен и остекления;
- вычисляют сопротивление теплопередачи, используя данные справочника;
- рассчитывают коэффициент по типу утеплителя – данные тоже есть в строительном справочнике, можно уточнить в паспорте изделий;
- вычисляют уровень теплопотерь через окна;
- расчетные величины умножают на сумму температур (внутри и снаружи здания) и получают суммарный расход тепла.
Расчет тепловой вентиляционной нагрузки выполняют по формуле Qv=c*m*(Tv-Tn), где:
- Qv – расход тепла вентиляцией;
- с – теплоемкость воздуха;
- m – масса воздуха: в среднем для нормальной вентиляции необходим объем воздуха, равный утроенной квадратуре комнаты; массу получают, умножив величину на плотность воздуха;
- Tv-Tn – разница между внешней и внутренней температурой.
Общий показатель получают, просуммировав расчетные теплопотери здания и потери через вентиляцию.
Точные расчеты тепловой нагрузки
Значение теплопроводности и сопротивление теплопередачи для строительных материалов
Но все же этот расчет оптимальной тепловой нагрузки на отопление не дает требуемую точность вычисления. Он не учитывает важнейший параметр – характеристики здания. Главной из них является сопротивление теплопередачи материал изготовления отдельных элементов дома – стен, окон, потолка и пола. Именно они определяют степень сохранения тепловой энергии, полученной от теплоносителя системы отопления.
Что же такое сопротивление теплопередачи (R)? Это величина, обратная теплопроводности (λ) – возможности структуры материала передавать тепловую энергию. Т.е. чем больше значение теплопроводности – тем выше тепловые потери. Для расчета годовой нагрузки на отопление воспользоваться этой величиной нельзя, так как она не учитывает толщину материала (d). Поэтому специалисты используют параметр сопротивление теплопередачи, который вычисляется по следующей формуле:
R=d/λ
Расчет по стенам и окнам
Сопротивление теплопередачи стен жилых зданий
Существуют нормированные значения сопротивления теплопередачи стен, которые напрямую зависят от региона, где расположен дом.
В отличие от укрупненного расчета нагрузки на отопление сначала нужно вычислить сопротивление теплопередачи для наружных стен, окон, пола первого этажа и чердака. Возьмем за основу следующие характеристики дома:
- Площадь стен – 280 м². В нее включены окна – 40 м²;
- Материал изготовления стен – полнотелый кирпич (λ=0.56). Толщина наружных стен – 0,36 м. Исходя из этого рассчитываем сопротивление телепередачи — R=0.36/0.56= 0,64 м²*С/Вт;
- Для улучшения теплоизоляционных свойств был установлен наружный утеплитель – пенополистирол толщиной 100 мм. Для него λ=0,036. Соответственно R=0,1/0,036= 2,72 м²*С/Вт;
- Общее значение R для наружных стен равно 0,64+2,72= 3,36 что является очень хорошим показателем теплоизоляции дома;
- Сопротивление теплопередачи окон — 0,75 м²*С/Вт (двойной стеклопакет с заполнением аргоном).
Фактически тепловые потери через стены составят:
(1/3,36)*240+(1/0.75)*40= 124 Вт при разнице температуры в 1°С
Температурные показатели возьмем такие же, как и для укрупненного вычисления нагрузки на отопление +22°С в помещении и -15°С на улице. Дальнейший расчет необходимо делать по следующей формуле:
124*(22+15)= 4,96 кВт/час
Расчет по вентиляции
Затем необходимо вычислить потери через вентиляцию. Общий объем воздуха в здании составляет 480 м³. При этом его плотность примерно равна 1,24 кг/м³. Т.е. его масса равна 595 кг. В среднем за сутки (24 часа) происходит пятикратное обновление воздуха. В таком случае для вычисления максимальной часовой нагрузки для отопления нужно рассчитать тепловые потери на вентиляцию:
(480*40*5)/24= 4000 кДж или 1,11 кВт/час
Суммируя все полученные показатели можно найти общие тепловые потери дом:
4,96+1,11=6,07 кВт/час
Таким образом определяется точная максимальная тепловая нагрузка на отопление. Полученная величина напрямую зависит от температуры на улице. Поэтому для расчета годовой нагрузки на отопительную систему нужно учитывать изменение погодных условий. Если средняя температура в течение отопительного сезона составляет -7°С, то итоговая нагрузка на отопление будет равна:
(124*(22+7)+((480*(22+7)*5)/24))/3600)*24*150(дней отопительного сезона)=15843 кВт
Меняя температурные значения можно сделать точный расчет тепловой нагрузки для любой системы отопления.
Полученная величина указывает на фактические затраты энергоносителя при работе системы. Существует несколько способов регулирования тепловой нагрузки отопления. Наиболее действенный из них – уменьшение температуры в комнатах, где нет постоянного присутствия жильцов. Это можно осуществить с помощью терморегуляторов и установленных датчиков температуры. Но при этом в здании должна быть установлена двухтрубная система отопления.
Для вычисления точного значения тепловых потерь можно воспользоваться специализированной программой Valtec. В видеоматериале показа пример работы с ней.
Основные факторы
Идеально рассчитанная и сконструированная система отопления должна поддерживать заданную температуру в помещении и компенсировать возникающие потери тепла. Рассчитывая показатель тепловой нагрузки на систему отопления в здании нужно принимать к сведению:
— Назначение здания: жилое или промышленное.
— Характеристику конструктивных элементов строения. Это окна, стены, двери, крыша и вентиляционная система.
— Размеры жилища. Чем оно больше, тем мощнее должна быть система отопления. Обязательно нужно учитывать площадь оконных проемов, дверей, наружных стен и объем каждого внутреннего помещения.
— Наличие комнат специального назначения (баня, сауна и пр.).
— Степень оснащения техническими приборами. То есть, наличие горячего водоснабжения, системы вентиляции, кондиционирование и тип отопительной системы.
— Температурный режим для отдельно взятого помещения. Например, в комнатах, предназначенных для хранения, не нужно поддерживать комфортную для человека температуру.
— Количество точек с подачей горячей воды. Чем их больше, тем сильнее нагружается система.
— Площадь остекленных поверхностей. Комнаты с французскими окнами теряют значительное количество тепла.
— Дополнительные условия. В жилых зданиях это может быть количество комнат, балконов и лоджий и санузлов. В промышленных – количество рабочих дней в календарном году, смен, технологическая цепочка производственного процесса и пр.
— Климатические условия региона. При расчёте теплопотерь учитываются уличные температуры. Если перепады незначительны, то и на компенсацию будет уходить малое количество энергии. В то время как при -40 о С за окном потребует значительных ее расходов.
Формула расчета в Гкал
Расчет тепловой нагрузки на отопление здания в случае отсутствия счетчиков учета тепловой энергии производится по формуле Q = V * (Т1 — Т2) / 1000, где:
- V – объем волы, которую потребляет система отопления, измеряется тоннами или куб.м.,
- Т1 – температура горячей воды. Измеряется в С (градусы по Цельсию) и для вычислений берется температура, соответствующая определенному давлению в системе. Показатель этот имеет свое название – энтальпия. Если точно определить температуру нельзя то используют усредненные показатели 60-65 С.
- Т2 – температура холодной воды. Зачастую ее измерить практически невозможно и в таком случае используют постоянные показатели, которые зависят от региона. К примеру, в одном из регионов, в холодное время года показатель будет равен 5, в теплое – 15.
- 1 000 – коэффициент для получения результата расчета в Гкал.
Для системы отопления с закрытым контуром тепловая нагрузка (Гкал/час) рассчитывается другим способом: Qот = α * qо * V * (tв — tн.р) * (1 + Kн.р) * 0,000001, где:
- α – коэффициент, призванный корректировать климатические условия. Берется в расчет, если уличная температура отличается от -30 С;
- V – объем строения по наружным замерам;
- qо – удельный отопительный показатель строения при заданной tн.р = -30 С, измеряется в Ккал/куб.м.*С;
- tв – расчетная внутренняя температура в здании;
- tн.р – расчетная уличная температура для составления проекта системы отопления;
- Kн.р – коэффициент инфильтрации. Обусловлен соотношением тепловых потерь расчетного здания с инфильтрацией и теплопередачей через внешние конструктивные элементы при уличной температуре, которая задана в рамках составляемого проекта.
Как воспользоваться результатами вычислений
Зная потребность здания в тепловой энергии, домовладелец может:
- четко подобрать мощность теплосилового оборудования для обогрева коттеджа;
- набрать нужное количество секций радиаторов;
- определить необходимую толщину утеплителя и выполнить теплоизоляцию здания;
- выяснить расход теплоносителя на любом участке системы и при необходимости выполнить гидравлический расчет трубопроводов;
- узнать среднесуточное и месячное потребление тепла.
Последний пункт представляет особый интерес. Мы нашли величину тепловой нагрузки за 1 час, но ее можно пересчитать на более продолжительный период и вычислить предполагаемый расход топлива — газа, дров или пеллет.
Определение диаметра труб
Для окончательного определения диаметра и толщины отопительных труб осталось обсудить вопрос относительно потерь теплоты.
Максимальное количество тепла уходит из помещения через стены – до 40%, через окна – 15%, пол – 10%, всё остальное через потолок/крышу. Для квартиры характерны потери в основном через окна и балконные модули
Существует несколько видов потерь теплоты в отапливаемых помещениях:
- Потери давления потока в трубе. Этот параметр прямо пропорционален произведению удельной потери на трение внутри трубы (предоставляет производитель) на общую длину трубы. Но учитывая текущую задачу такие потери можно не учитывать.
- Потери напора на местных трубных сопротивлениях – издержки теплоты на фитингах и внутри оборудования. Но учитывая условия задачи, небольшое количество фитинг-изгибов и число радиаторов, такими потерями можно пренебречь.
- Теплопотери исходя из расположения квартиры. Существует ещё один тип тепловых издержек, но они больше связаны с расположением помещения относительного остального здания. Для обычной квартиры, которая находиться в средине дома и соседствует слева/справа/сверху/снизу с другими квартирами, тепловые потери через боковые стены, потолок и пол практически равны “0”.
В расчёт можно только взять потери через фасадную часть квартиры – балкон и центральное окно общей комнаты. Но это вопрос закрывается за счёт дополнения 2-3 секций к каждому из радиаторов.
Значение диаметра труб подбирают по расходу теплоносителя и скорости его циркуляции в отопительной магистрали
Анализируя выше изложенную информацию, стоит отметить что для рассчитанной скорости горячей воды в системе отопления известна табличная скорость перемещения частиц воды относительно стенки трубы в горизонтальном положении 0,3-0,7 м/с.
В помощь мастеру представляем так называемый чек-лист проведения вычислений для типичного гидравлического расчёта системы отопления:
- сбор данных и расчёт мощности котла;
- объём и скорость теплоносителя;
- потери теплоты и диаметр труб.
Иногда при просчёте можно получить достаточно большой диаметр трубы, что бы перекрыть расчётный объём теплоносителя. Эту проблему можно решить увеличением литража котла или добавлением дополнительного расширительного бака.
На нашем сайте есть блок статей, посвященных расчету отопительной системы, советуем ознакомиться:
- Тепловой расчёт системы отопления: как грамотно сделать расчет нагрузки на систему
- Расчет водяного отопления: формулы, правила, примеры выполнения
- Теплотехнический расчет здания: специфика и формулы выполнения вычислений + практические примеры
Формулы расчёта
Исходя из общих потребностей здания в тепловой энергии и технических характеристик постройки, с целью определения оптимального количества теплоты за единицу времени могут использоваться разные стандартные формулы.
При отсутствии приборов учёта: Q = V × (Тх - Тy) / 1000
Обозначение | Параметр |
V | Объём теплового носителя в отопительной системе |
Тх | Показатели температурного режима нагретого теплоносителя (60-65оС) |
Тy | Исходная температура не нагретого теплового носителя |
1000 | Стандартный поправочный числовой множитель |
Схема отопления с замкнутым типом контура:
Qот = α × qо × V × (Тв - Тн.р) × (1 + Kн.р) × 0,000001
Обозначение | Параметр |
α | Корректирующий погодные характеристики числовой множитель при уличном температурном режиме, отличном от минус 30оС |
V | Показатели объёма строения в соответствии с наружными замерами |
qо | Отопительный удельный показатель при температурном режиме -30оС |
tв | Расчётные показатели внутреннего температурного режима в строении |
tн.р | Расчётный режим наружного температурного режима для проектирования отопительной системы |
Kн.р | Поправочный числовой множитель в виде соотношения теплопотерь с инфильтрацией и тепловой передачей посредством внешних конструктивных элементов |
Применение поправочного числового множителя
При выполнении расчётов тепловой нагрузки обязательно учитывается поправочный числовой множитель, при помощи которого определяется отличие расчётного температурного режима наружного воздуха для проектов отопительных систем. В таблице представлены поправочные числовые множители для различных климатических зон, расположенных на территории Российской Федерации.
-35оС | -36оС | -37оС | -38оС | -39оС | -40оС |
0,95 | 0,94 | 0,93 | 0,92 | 0,91 | 0,90 |
В других регионах России, где расчётный температурный режим наружных воздушных масс при проектировании отопительной системы находится на уровне минус 31°С или ниже, значения расчётных температур внутри обогреваемых помещений принимаются в соответствии с данными, приведёнными в действующей редакции СНиП 2.08.01-85.
На что обратить внимание при расчётах
В соответствии с действующим СНиП, на каждые 10 м2 обогреваемой площади должно приходится не менее 1 кВт тепловой мощности, но при этом в обязательном порядке учитывается так называемый региональный поправочный числовой множитель:
- зона с умеренными климатическими условиями – 1.2-1.3;
- территория южных регионов – 0.7-0.9;
- районы крайнего севера – 1.5-2.0.
Кроме прочего, немаловажное значение имеет высота потолочных конструкций и индивидуальные тепловые потери, которые напрямую зависят от типовых характеристик эксплуатируемого строения. Как правило, на каждый кубометр полезной площади затрачивается 40 ватт тепловой энергии, но при выполнении расчётов потребуется также учитывать следующие поправки:
- наличие окна – плюс 100 ватт;
- наличие двери – плюс 200 ватт;
- угловое помещение – поправочный числовой множитель 1.2-1.3;
- торцевая часть здания – поправочный числовой множитель 1.2-1.3;
- частное домовладение – поправочный числовой множитель 1.5.
Практическое значение имеют показатели потолочного и стенового сопротивления, потери тепла через конструкции ограждающего типа и функционирующую вентиляционную систему.
Вид материала | Уровень термического сопротивления |
Кирпичная кладка в три кирпича | 0,592 м2 × с/Вт |
Кирпичная кладка в два с половиной кирпича | 0,502 м2 × с/Вт |
Кирпичная кладка в два кирпича | 0,405 м2 × с/Вт |
Кирпичная кладка в один кирпич | 0,187 м2 × с/Вт |
Газосиликатные блоки толщиной 200 мм | 0,476 м2 × с/Вт |
Газосиликатные блоки толщиной 300 мм | 0,709 м2 × с/Вт |
Бревенчатые стены толщиной 250 мм | 0,550 м2 × с/Вт |
Бревенчатые стены толщиной 200 мм | 0,440 м2 × с/Вт |
Бревенчатые стены толщиной 100 мм | 0,353 м2 × с/Вт |
Деревянный неутеплённый пол | 1,85 м2 × с/Вт |
Двойная деревянная дверь | 0,21 м2 × с/Вт |
Штукатурка толщиной 30 мм | 0,035 м2 × с/Вт |
Каркасные стены толщиной 20 см с утеплением | 0,703 м2 × с/Вт |
В результате функционирования вентиляционной системы потери тепловой энергии в зданиях составляют порядка 30-40%, через кровельные перекрытия уходит примерно 10-25%, а сквозь стены – около 20-30%, что должно учитываться при проектировании и расчёте тепловой нагрузки.
Избыточность и точный расчет
Стоит с самого начала оговорить одну тонкость расчетов: абсолютно точные значения потерь тепла через пол, потолок и стены, которые приходится компенсировать системе отопления, вычислить практически невозможно. Можно говорить лишь о той или иной степени достоверности оценок.
Причина – в том, что на теплопотери влияет слишком много факторов:
- Тепловое сопротивление капитальных стен и всех слоев отделочных материалов.
- Наличие или отсутствие мостиков холода.
- Роза ветров и расположение дома на рельефе местности.
- Работа вентиляции (которая, в свою очередь, опять-таки зависит от силы и направления ветра).
- Степень инсоляции окон и стен.
Есть и хорошие новости. Практически все современные отопительные котлы и системы распределенного отопления (теплые полы, электрические и газовые конвектора и т.д.) снабжаются термостатами, дозирующими расход тепла в зависимости от температуры в помещении.
Выносной термостат газового котла.
С практической стороны это означает, что избыточная тепловая мощность повлияет лишь на режим работы отопления: скажем, 5 КВт*ч тепла будут отданы не за один час непрерывной работы с мощностью 5 КВт, а за 50 минут работы с мощностью 6 КВт. Следующие 10 минут котел или другой нагревательный прибор проведет в режиме ожидания, не потребляя электроэнергию или энергоноситель.
Единственное исключение из общего правила связано с работой классических твердотопливных котлов и обусловлено тем, что снижение их тепловой мощности связано с серьезным падением КПД из-за неполного сгорания топлива. Проблема решается установкой в контур теплоаккумулятора и дросселированием отопительных приборов термоголовками.
Простейшая схема отопления с теплоаккумулятором.
Котел после растопки работает на полной мощности и с максимальным КПД до полного прогорания угля или дров; затем накопленное теплоаккумулятором тепло дозировано расходуется на поддержание оптимальной температуры в помещении.
Большая часть прочих нуждающихся в расчете параметров тоже допускает некоторую избыточность. Впрочем, об этом – в соответствующих разделах статьи.
Нормы температурных режимов помещений
Перед проведение любых расчётов параметров системы необходимо, как минимум, знать порядок ожидаемых результатов, а также иметь в наличии стандартизированные характеристики некоторых табличных величин, которые необходимо подставлять в формулы или ориентироваться на них.
Выполнив вычисления параметров с такими константами, можно быть уверенным в достоверности искомого динамического или постоянного параметра системы.
Для помещений разнообразного назначения существуют эталонные стандарты температурных режимов жилых и нежилых помещений. Эти нормы закреплены в так называемых ГОСТах
Для системы отопления одним из таких глобальных параметров является температура помещения, которая должна быть постоянной в независимости от периода года и условий окружающей среды.
Согласно регламенту санитарных нормативов и правил есть различия в температуре относительно летнего и зимнего периода года. За температурный режим помещения в летний сезон отвечает система кондиционирования, принцип ее расчета подробно изложен в этой статье.
А вот комнатная температура воздуха в зимний период обеспечивается системой отопления. Поэтому нам интересны диапазоны температур и их допуски отклонений для зимнего сезона.
В большинстве нормативных документов оговариваются следующие диапазоны температур, которые позволяют человеку комфортно находиться в комнате.
Для нежилых помещений офисного типа площадью до 100 м2:
- 22-24°С – оптимальная температура воздуха;
- 1°С – допустимое колебание.
Для помещений офисного типа площадью более 100 м2 температура составляет 21-23°С. Для нежилых помещений промышленного типа диапазоны температур сильно отличаются в зависимости от предназначения помещения и установленных норм охраны труда.
Комфортная температура помещения у каждого человека “своя”. Кто-то любит чтобы было очень тепло в комнате, кому-то комфортно когда в комнате прохладно – это всё достаточно индивидуально
Что же касаемо жилых помещений: квартир, частных домов, усадеб и т. д. существуют определённые диапазоны температуры, которые могут корректироваться в зависимости от пожеланий жильцов.
И всё же для конкретных помещений квартиры и дома имеем:
- 20-22°С – жилая, в том числе детская, комната, допуск ±2°С –
- 19-21°С – кухня, туалет, допуск ±2°С;
- 24-26°С – ванная, душевая, бассейн, допуск ±1°С;
- 16-18°С – коридоры, прихожие, лестничные клетки, кладовые, допуск +3°С
Важно отметить, что есть ещё несколько основных параметров, которые влияют на температуру в помещении и на которые нужно ориентироваться при расчёте системы отопления: влажность (40-60%), концентрация кислорода и углекислого газа в воздухе (250:1), скорость перемещения воздушных масс (0.13-0.25 м/с) и т. п