Все ли ты знаешь о лампах накаливания

Анализ работоспособности диодов и радиоламп

Радиолампы представляют собой ламповые диоды, использовавшиеся ранее в электронном оборудовании. В настоящее время они заменены полупроводниковыми диодами. Тестирование любых видов диодов, в том числе радиоламп, с помощью мультиметра имеет свои особенности.

Диод имеет два полюса – катод и анод. Если поднести положительный щуп мультиметра (красный) к аноду, а отрицательный (черный) к катоду, ток будет протекать через диод. На экране мультиметра отобразится пороговое напряжение, величина которого может колебаться от 200 до 800 мВ.

Если поменять местами щупы тестера, ток протекать не будет, поскольку диод обладает однонаправленной проходимостью. В случае с радиолампой сопротивление нужно определять между нитью накала, являющейся катодом, и управляющей сеткой.

Существует специальный прибор, называемый тестер ламп. Такие анализаторы, обеспечивающие проверку электроламп, снабжены приспособлениями для испытания вакуума. Эти приборы полезны не только как испытатели, но и как анализаторы для быстрого измерения рабочего режима ламповых элементов любого радиоаппарата.

Испытатель несколько отличается от мультиметра, он больше похож на стенд и позволяет измерять анодно-сеточные характеристики. На нем присутствуют гнезда для лампочек, миллиамперметр, работающий как милливольтметр, а также источники питания. Для любителей старых ламповых приемников тестер становится отличным помощником в работе.

Первые преобразования энергии в свет

В XVIII веке произошло знаменательное открытие, положившее начало огромной череде изобретений. Был обнаружен электрический ток. На рубеже следующего столетия итальянским учёным Луиджи Гальвани был изобретен способ получения электрического тока из химических веществ – вольтов столб или гальванический элемент. Уже в 1802 году физик Василий Петров открыл электрическую дугу и предложил применять ее в качестве осветительного устройства. Через 4 года королевское общество увидело электрическую лампу Гемфри Дэви, она освещала помещение за счёт искорок между стержнями из угля. Первые дуговые лампы отличались чересчур высокой яркостью и ценой, что делало их непригодными для ежедневного использования.

Характеристики

Лампы накала обладают такими характеристиками:

Принцип действия

Суть работы всех ЛН в использовании принципа нагревания вещества при прохождении сквозь него тока. В этом случае повышается температура нити накала после замыкания электрической цепи. Как результат запускается эффект электромагнитного теплового излучения. Чтобы оно стало видимым для человека, температура нагревания должна превышать 570 ⁰C – это начало красного свечения.

Внутри лампы нить накаливания разогревается до 2000–2800 ⁰С. При разогревании до такой температуры на воздухе вольфрам превращается в оксид – на нем образуется белый налет, поэтому внутрь колбы закачиваются нейтральные газы. На заре развития данной технологи освещения в лампочке создавался вакуум, сейчас это практикуют только для изделий минимальной мощности. При закручивании в патрон цоколя лампы и замыкании цепи запускается процесс накаливания нити, и она дает свет.

Конструкция

Устройство всех ЛН схоже, в них содержаться:

  1. Рабочая часть – нить из вольфрамовой проволоки, свернутая в спираль. Удельное сопротивление этого металла в 3 раза больше, чем у меди. Вольфрам используется, потому что он тугоплавкий и можно максимально уменьшить сечение нити. За счет этого повышается электрическое сопротивление. Питание спираль получает от электродов.
  2. Спираль удерживают элементы из молибдена. Он также тугоплавкий, имеет низкий коэффициент теплового расширения.
  3. Колба из стекла. Внутри ее инертный газ, что не дает сгореть нити накала. Именно поэтому такие лампы не вакуумные, именно газ создает давление внутри колбы.
  4. Электроды соединяются с контактными элементами цоколя с помощью медных проводников.
  5. Цоколь. Такой элемент есть во всех рассматриваемых лампочках, за исключением специальных автомобильных. Резьба на цоколе и его размер могут быть различными.

Цоколь

Самые привычные для нас лампочки с резьбовым цоколем, размеры их стандартизированы. Для моделей, что используются в бытовых условиях, востребованы Е 14, Е 27 и Е 40. Реже используются для таких источников света без резьбы, но они распространены в автомобильном деле.

Интересно! В Америке и Канаде используются другие стандарты цоколей по причине иного напряжения в сети. Для них привычные размеры резьбы в мм: 12, 17, 26 и 39. При отражении размера цоколя на лампочке перед цифрами стоит так же как и у нас литера Е.

Маркировка

Разобраться в маркировке ламп накаливания несложно, основные обозначения, которые можно встретить:

  • Специфика конструкции и свойства. «Б» указывает на аргоновую биспиральную ЛН, «В» – на содержание внутри вакуума, «Г» – на то, что в лампу закачан газ, «БК» – биспиральная криптоновая, «МЛ» – молочный цвет колбы, «МТ» – матовая, «О» – опаловая.
  • О назначении лампочки расскажет вторая часть маркировки. «Ж» – железнодорожная, «КМ» – коммутационная, «СМ» – для самолетов, «А» – для автомобилей, «ПЖ» – лампа высокой мощности для использования в прожекторах.
  • Форму обозначают так: «А» – абажур, «Д» – декоративная, «В» – витая.
  • Первые цифры – это номинальное напряжение.

Коэффициент полезного действия и долговечность

Существенные недостатки таких ламп – это небольшой срок эксплуатации и низкий коэффициент полезного действия. Под КПД подразумевается соотношение мощности и заметного человеку излучения. Как помним, нить разогревается до 2700 К, в этом случае ее КПД около 5%. Вся остальная энергия, которая, кстати, в полном объеме превращается в излучение, припадает на инфракрасный спектр, который невидим для человека. Мы воспринимаем его как тепло.

Теоретические повысить КПД до 20% можно, для этого следует увеличить температуру нити накала до 3400 К, получаемый свет в этом случае будет в 2 раза ярче, правда, срок эксплуатации уменьшается на 95%.

Если мощность снижать, то период эксплуатации ламп накаливания может увеличиваться в 5 и более раз. Уменьшение напряжения при этом снижает КПД, но использовать лампочку получиться в 1000 раз дольше. Этот эффект используется при создании надежного дежурного освещения. Конечно, это возможно, только если нет критических требований к освещенности.

Принцип действия

Принцип работы лампы построен на сильном нагреве нити накаливания за счет проходящего через нее электрического тока. Для того чтобы твердотельный материал начал излучать красное свечение, его температура должна достигнуть 570 град. Цельсия. Излучение будет приятным для глаз человека только при увеличении этого параметра в 3–4 раза.

Подобной тугоплавкостью характеризуются немногие материалы. За счет доступной ценовой политики выбор был сделан в пользу вольфрама, температура плавления которого составляет 3400 град. Цельсия. Чтобы повысить площадь светового излучения, вольфрамовая нить скручивается в спираль. В процессе эксплуатации она может нагреваться до 2800 град. Цельсия. Цветовая температура такого излучения равна 2000–3000 К, что дает желтоватый спектр — несопоставимый с дневным, но в то же время не оказывающий негативного воздействия на зрительные органы.

Попадая в воздушную среду, вольфрам быстро окисляется и разрушается. Как уже говорилось выше, вместо вакуума стеклянная колба может заполняться газами. Речь идет об инертных азоте, аргоне или криптоне. Это позволило не только повысить долговечность, но и увеличить силу свечения. На срок эксплуатации влияет то, что давление газа препятствует испарению вольфрамовой нити из-за высокой температуры свечения.

Электрооборудование, свет, освещение. Как проверить лампу галогеновую

Как проверить люминесцентную лампу? — Diodnik

Со временем любые лампочки перегорают, это касается не только обычных ламп, но и светодиодных светильников или ламп дневного света. Если люминесцентная лампа перестала гореть, прежде всего ее необходимо проверить. Как это правильно сделать, читаем ниже.

Как проверить люминесцентную лампу?

Для теста выбран светильник Delux, который работал в течении нескольких лет, но нынче перестал зажигаться. Как раз подходит для подобных целей.

Первым делом необходимо снять рассеиватель и осмотреть люминесцентную трубку на наличия сильного почернения. По краям четко видны такие почернения, косвенно это говорит, что такая трубка вполне может быть уже вышедшей из строя.

Следующим этапом будет проверка целостности нитей накала. Включив мультиметр в режим проверки сопротивления поочередно необходимо проверить каждую нить. 

Сопротивление нитей составляет 9,5 – 9,2 Ом, что означает, что обе нити накала еще целы.

Если хоть одна из них будет перегоревшей, тогда наш тестер покажет 1 (разрыв цепи). В таком случае люминесцентную трубку необходимо заменить новой.

Когда проверка лампы окончена, но она не светит, необходимо проверять или ремонтировать электронный балласт люминесцентной лампы. В данном случае проблема была в сильно окислившихся контактах люминесцентной трубки.

После зачистки контактов от окислов и установки трубки в корпус светильника лампа ожила. Можно сказать, что этому светильнику повезло.

Подробнее о том, как проверять электронный балласт и ремонтировать его, мы расскажем вам позже.

diodnik.com

Виды ламп | Electricdom.ru

Осветительные приборы составляют самую многочисленную группу электроприборов в каждом доме. Источники света являются важным элементом быта.

Лампы накаливания

Лампы накаливания относятся к классу тепловых источников света. Несмотря на внедрение более технологичных видов ламп, остаются одними из самых массовых и дешевых источников света, особенно в бытовом секторе.

Действие этих ламп основано на нагревании спирали проходящим через нее током до температуры 3000 градусов. Колбы ламп мощностью от 40 Вт и более наполнены инертными газами — аргоном или криптоном.

Бытовые лампы бывают мощностью 25 — 150 Ватт. Лампы мощностью до 60 Ватт с уменьшенным цоколем называются миньонами. Проверить исправность лампы можно тестером, спираль должна иметь определенное сопротивление.

У светильника с лампой накаливания возможно всего две неисправности:1. Перегорела лампа2. Отсутствует контакт в электропроводке, в результате чего на цоколь не подается напряжение.

Достоинства: Просты по конструкции, надежны, не имеют дополнительных устройств при включении, практически не зависят от температуры окружающей среды, мгновенно зажигаются.Недостатки: Имеют не очень большой срок службы, около 1000 часов.

Лампы люминесцентные

Люминесцентные лампы относятся к газоразрядным лампам низкого давления. Могут быть различной формы: прямые, трубчатые, фигурные и компактные (КЛЛ). Диаметр трубки не связан с мощностью лампы, которая может достигать до 200 Вт. Трубчатые лампы имеют двухштырьковые типы цоколей в зависимости от расстояния между штырьками: G-13 (расстояние — 13 мм) для ламп диаметром 40 мм и 26 мм и G-5 (расстояние — 5 мм) для ламп диаметром 16 мм.

Компактная люминесцентная лампа (КЛЛ) — люминесцентная лампа, которая имеет изогнутую форму колбы, что позволяет разместить ее в светильнике небольших размеров. Такие лампы могут иметь встроенный электронный дроссель (ЭПРА), могут быть разной формы и разной длины. Применяются либо в специальных типах светильников либо для замены ламп накаливания в обычных типах светильников (лампы мощностью до 20Вт, которые вкручиваются в резьбовой патрон или через адаптер).

Люминесцентные лампы требуют работы специального устройства — пускорегулирующего аппарата (дросселя). Большинство зарубежных ламп могут работать как с обычными (с дросселем), так и с электронными пускорегулирующими аппаратами (ЭПРА). Но некоторые из них предназначены только для одного вида ПРА.

Светильники с ЭПРА имеют следующие преимущества: лампа не мерцает, лучше зажигается, не шумит (шум от дросселя), легче по весу, экономит электроэнергию (потери мощности в ЭПРА намного ниже, чем в ПРА).

Меняя виды люминофора, можно изменять цветовые характеристики ламп. Буквы, входящие в наименование люминисцентных ламп, означают:Л — люминесцентная, Б — белая, ТБ — тепло-белая, Д — дневная, Ц — с улучшенной цветопередачей. Цифры 18, 20, 36, 40, 65, 80 обозначают номинальную мощность в ваттах. Например, ЛДЦ-18 —

Конструкционные особенности

Поскольку лампа накаливания считается самым первым источников света, то вполне закономерно, что ее конструкция должна быть достаточной простой. Особенно, если сравнивать с нынешними источниками света, которые ее постепенно вытесняют с рынка.
В лампе накаливания ведущими элементами считаются:

  • колба лампы;
  • тело накала;
  • токовводы.

Конструкция лампы накаливания

На сегодняшний день разработано несколько вариантов ламп накаливания, но такое строение характерно для самых простых и самых первых моделей.
В стандартной лампочке накаливания, кроме вышеописанных элементов имеется предохранитель, который представляет собой звено. Оно состоит из ферроникелевого сплава. Его вваривают в разрыв одного из двух токовводов изделия. Звено размещается в ножке токоввода. Оно нужно для того, чтобы предупредить разрушение стеклянной колбы во время прорыва нити накала. Это связано с тем, что при прорыве вольфрамовой нити создается электрическая дуга. Она может оплавить остатки нити. А ее фрагменты могут повредить колбу из стекла и привести к возникновению возгорания.
Предохранитель же разрушает электрическую дугу. Такое ферроникелевое звено размещается в полости, где давление равняется атмосферному. В данной ситуации дуга гаснет.
Такое строение и принцип работы обеспечили лампе накаливания широкое распространение по миру, но из-за их высокого энергопотребления и непродолжительному сроку службы, она сегодня стали использоваться гораздо реже. Связано это с тем, что появились более современные и эффективные источники света.

«Авторы» лампочек из разных стран

Прежде чем перейти к хронологии изобретения электрической лампочки, хотелось бы отметить, а что мы подразумеваем под понятием «электрическая лампочка». Но все они имели тот недостаток, что нельзя было включить несколько ламп в одну цепь. Приходилось использовать для каждого светильника свой источник питания. Он показал русские лампы изобретателю по имени Томас Эдисон, который в то время также работал над проблемой электрического освещения. Но заслуга Эдисона, прежде всего в том, что он изобрел и создал надсистему для этой лампы и поставил ее производство на поток, что привело к сильному удешевлению стоимости. Из сказанного следует, что у электрической лампы накаливания на самом раннем этапе было несколько изобретателей. Вероятно, искать однозначный ответ на вопрос «Кто изобрел электрическую лампочку» бессмысленно. В последние годы такие энергосберегающие лампочки находят все большее применение, не смотря на их пока еще большую стоимость, чем у традиционных ламп накаливания. Нельзя было не попытаться использовать светодиоды в качестве источников света. Они и нашли, первоначально, применение в ручных электрических фонариках.

На стенах самих пирамид есть ответ, в который трудно поверить историкам, – древние люди пользовались лампами, скорее всего, электрическими, питающимися от мощных аккумуляторов. Появление в массовых масштабах электрических лампочек подготовлено целым рядом ученых-изобретателей. 1875 году В.Ф. Дидрихсон, сотрудник А.Н. Лодыгина, усовершенствовал его лампу, установив несколько независимых друг от друга угольных волосков, продлив тем самым период свечения устройства. П.Н. Яблочков в 1875 – 1876 годах создает лампу с каолиновой нитью накала, которая не требовала для продолжительного горения наличия вакуума. Из хронологии событий видно, что к изобретению лампы накаливания приложили руки многие ученые-изобретатели.

Он предложил применять вольфрам, который и используется в современных лампочках. 1. Настоящие Правила регламентируют отношения между ЗАО «Аргументы и Факты» (далее Издание) и лицом (далее — Пользователь), предоставившим изданию фото, видео материалы (далее – Материалы). 4. отказывается от любых видов авторского вознаграждения за использование Материалов Изданием в соответствии с настоящими Правилами. 9. При размещении Материалов Издание указывает имя Пользователя, указанное Пользователем при предоставлении Материалов.

Электроток раскалял до свечения специальный фитиль, за счёт чего и было реализовано освещение. Впоследствии Яблочков усовершенствовал свечу, так как в первоначальном варианте фитиль прогорал всего за полтора-два часа, и на следующий день нужно было его заменять.

В 1880 году он запатентовал угольную лампу, которая была способна светить порядка 40 часов. Ему также удалось значительно снизить себестоимость лампы. Вскоре его лампы вытеснили газовое освещение. Его огромной и неоспоримой заслугой является то, что, объединив все лучшее, он открыл миру практическую лампу вместе с электрической системой.

За каждым из вышеназванных изобретателей тянется более или менее длинный шлейф изобретений. Если бы Эдисон, украв идею русских лаптей, превратил бы их в кроссовки типа Nike, вот это было бы под стать изобретению Лодыгина. Комитет национальной обороны Франции выделяет Лодыгину 50 тысяч франков, но по пути у рассеянного изобретателя то ли французские апаши, то ли русские жиганы украли чемодан. Но, согласитесь, дело не только в бумажках… Восемь фонарей с лампочкой Лодыгина освещали улицы Санкт-Петербурга уже в 1873 году — а это уже весьма наглядный аргумент. А бедный (в прямом смысле) Лодыгин вынужден был продать свое самое перспективное изобретение — лампочку накаливания с вольфрамовой нитью. Нужно ли говорить, в чьи руки оно попало?

Правдивая история создания лампы накаливания в хронологическом порядке

1840год. Британский химик и астроном Уоррен де ла Рю (Warren de la Rue), между прочим с 1864 года член-корреспондент Петербургской Академии Наук, размещает кусок платиновой проволоки в вакуумной трубке и пропускает через нее электрической ток, тем самым создав первую электрическую лампочку, по трудоемкости исполнения и стоимости больше напоминавшую некое произведение искусства. Больше известен за работы по исследованию Луны, один из кратеров которой назван в его честь.                   
1854 год. Германский часовщик Генрих Гебель (Heinrich Göbel) на выставке в Нью-Йорке представляет первую электрическую вакуумную лампу накаливания, пригодную для применения, сначала использую в качестве нити накаливания обугленную бамбуковую нить, а в качестве колб флаконы от духов. Должного внимания в те годы лампа Гебеля также не нашла. В 75 лет получил признание, как изобретатель первой пригодной для применения лампы накаливания с угольной нитью.
1860 год. Английский физик и химик Джозеф Уилсон Суон (Joseph Wilson Swan), по-русски Лебедь получил патент на вакуумную лампу накаливания, однако трудности в получении вакуума привели к тому, что лампочка Лебедя светила недолго. На этом работу не закончил и в 1878 году получил новый патент. В 1879 году в домах Англии стали делать электрическое освещение.
1874 год. 11 июля инженер-электрик Лодыгин Александр Николаевич получает патент на нитевую лампу, используя в качестве нити накаливания угольный стержень, помещенный в вакуум. Именно Лодыгин первым предложил применять в лампах вольфрамовые нити, закрученные в спираль. В 1906 году в США построил и пустил в ход завод по элетрохимическому получению вольфрама, хрома и др. металлов.  Не сойдясь во взглядах с большевиками в 1917 году покинул страну и в марте 1923 года умер в Бруклине.
1875 год. Русский электротехник, механик Одесского телеграфа Василий Федорович Дидрихсон усовершенствовал лампу Лодыгина, откачав из нее воздух и применяя несколько волосков нити накаливания. Лампа Дидрихсона уже имела некоторый успех, она была применена для освещения большого бельевого магазина на Б. Морской (ныне Герцена), так же очень помогла при строительстве Литейного моста во время подводных работ при ремонте осевшего кессона.
1876 год. Русский электротехник, военный инженер и изобретатель Павел Николаевич Яблочков открыл, что каолин (белая глина) электропроводен при высокой температуре. После чего он создал лампу, где «нить накала» была изготовлена из каолина. Особенностью данной лампы было то, что она не требовала вакуума, и «нить накала» не перегорала на открытом воздухе. Ни одно из изобретений в области электротехники не получало столь быстрого и широкого распространения, как свечи Яблочкова. Это был подлинный триумф русского инженера. Свечи Яблочкова появились в продаже и начали расходиться в громадном количестве, так, к примеру, французское предприятие Бреге ежедневно выпускало свыше 8 тысяч свечей. Каждая свеча стоила около 20 копеек и горела 1,5 часа. Проживая в Париже был посвящен в члены масонской ложи «Труд и Верные Друзья Истины» (Travail et Vrais Amis Fidèles). Умер в России в 46 лет.
. Американский изобретатель и предприниматель (Thomas Alva Edison) в ходе исследовательских работ, установив решающее значение вакуума при изготовлении ламп, закончил разработку лампы накаливания с угольной нитью, ставшей одним из крупнейших изобретений XIX века. Величайшая заслуга Эдисона именно в создании практически осуществимой, широко распространившейся системы электрического освещения с прочной нитью накала, с высоким и устойчивым вакуумом и с возможностью одновременного использования множества ламп, а не в разработке идеи. Одновременно Эдисон изобрёл бытовой поворотный выключатель. Эдисон является автором многочисленных важнейших изобретений: в течение жизни Эдисона Бюро патентов в США выдало ему 1093 патента, важнейшие из которых — это патенты на изобретение фонографа, угольного микрофона, кинетоскопа (оптический прибор для показа движущихся картинок). Так же известен тем, что приняв на работу молодого сербского инженера Николу Теслу не смог воспользоваться его гениальными идеями. Умер в 1931 году в возрасте 84 лет.
Правдивая история создания лампы накаливания в картинках

Готовим мультиметр к работе

Вынимаем прибор из чехла или футляра. Первым делом проводим визуальный осмотр. Корпус должен быть целым, крышка батарейного отсека установлена без перекосов. Визуально оцениваем целостность проводов и щупов. Отсутствие изоляции, которая может от времени просто осыпаться, восстанавливаем изолентой. Поможет и термоусадочная трубка, если она есть. Щупы тоже стоит осмотреть, замотать сколы по необходимости. Селектор мультиметра ставив в режим измерения омов, на отметку в 200 Ом. Чёрный кабель со щупом включаем в гнездо Com. Красный — в гнездо с символами измеряемых величин, названных в честь Алессандро Вольта, Андре-Мари Ампера и Георга Ома — V, A и Омега.

На индикаторе должна быть единица. Если это не так — прибор нуждается в ремонте. Замыкаем накоротко щупы. На дисплее должна выйти цифра ноль. Если всё так и происходит — прибор исправен. Если цифры меняются, отображаются тускло, попробуйте поменять элемент питания прибора на заведомо свежий и рабочий. Не помогло — мультиметр надо ремонтировать. Для проверки лампочки ставим селектор мультиметра на символ поиска обрыва. На корпусе в этом месте схематично изображён диод.

Основные показатели энергосберегающих ламп

  1. Показатели мощности. Данные лампы могут иметь различный мощностной диапазон. Он может находиться в пределах – от 3 до 90 Вт. Различие КПД между лампами накаливания и энергосберегающими лампами составляет – 5 раз. Исходя из этого показателя, выбирать данные лампы следует по следующему правилу: разделить мощностные характеристики на цифру 5. Традиционная лампа на 100 Вт аналогична по своим характеристикам современной лампе на 20 Вт.
  2. Цветовые характеристики. Типы и параметры работы современных ламп позволяют получать различную цветовую температуру. По данной характеристике можно выбрать следующие виды теплого цвета, влияющие на эмоциональное настроение человека: теплый белый (2700К), дневной (4200К) и холодный белый (6400К). Что несет в себе это обозначение? Чем ниже тип маркировки, тем цветовая температура и цветопередача стремятся к красному цвету, чем выше – к синему цвету. Перед покупкой данных лапочек, рекомендуется сделать обзор на всю таблицу параметров и провести эксперимент дома. Для каждого человека световой поток и спектр цветов может быть индивидуальными показателями, поэтому выбрать, проанализировав все виды ламп, нужно более соответствующую помещению.
  3. Сравнение по размерам. Современные энергосберегающие лампы производятся в соответствие со всеми нормами и правилами. Они могут иметь U – образную или спиральную форму. Их обзор в сравнение дает следующий результат: они различаются только формой. Спиралевидные лампы незначительно дороже, но и меньше по своим размерам. Какую лампу выбрать для использования дома? Ту, которая подойдет к светильнику или люстре по эстетическим соображениям. Энергосберегающие лампы могут иметь цоколи, аналогичные лампам накаливания и, по этому, могут их заменить без переделки светильников в части патронов.
  4. Разновидности цоколей. Стандартные световые приборы рассчитаны на цоколь с размером Е27, также встречаются и цоколи типа Е14. Зачастую размером Е27 обладают большие лампы и это легко определить визуально. Размером Е14, соответственно лампы среднего и маленького размера.

Весь спектр технических характеристик энергосберегающих ламп наносятся производителем на упаковку.

Проверка светодиодной лампы мультиметром

К сожалению, светодиодную лампу невозможно проверить мультиметром. Полупроводниковый прибор с достаточно сложной схемой можно в домашних условиях можно проверить на работоспособность только закрутив в исправный патрон и подав напряжение.

Светодиодная лампа с цоколем Е27

Проверка светодиодной лампы имеет свои особенности.

Эти лампочки имеются в большинстве современных люстр и других устройств освещения. Для проверки на исправность (или же неисправность) светодиода делаем следующее:

  1. При помощи старой банковской карты (пластиковой) избавляемся от рассеивателя, который находится между корпусом и самим светодиодом.
  2. Пластик постепенно продвигаем по линии склейки. Чтобы шов легче поддавался, его можно нагреть при помощи технического фена.
  3. Вскрываем плату.
  4. Прижимаем щупу к светодиодам и ждём, пока они не начнут тускло светиться.

Если никакого свечения не появилось, лампочку пора менять.

Мощные светодиоды

Проверяем яркий светодиод.

В гирляндах обычно используют светодиоды синего, жёлтого и белого цвета. Для их тестирования щупы не применяются, вместо этого их размещают в транзисторных гнёздах. Делается всё следующим образом:

  1. Сначала нужно определить какая у СМД распиновка.
  2. В нижней части мультиметра находим восемь гнёзд.
  3. Размещаем щупы: для анода используем гнездо Е, а для катода — гнездо С.
  4. Открываем PNP, на эмиттер Е подаётся заряд положительного значения. Если светодиод рабочий, то он загорится.
  5. Далее полярность меняем для NPN транзисторов. Устанавливаем анод в С отверстие, катод ставим в отверстие Е.

Проверка цифровым тестером

В режиме прозвонки

Каждый мультиметр имеет режим прозвонки, с помощью которого можно проверить целостность электрического соединения. На панели прибора данный режим обозначается специальным символом.

  • установить переключатель в режим прозвонки (проверки на обрыв);
  • коснуться одним щупом центрального контакта, а другим – бокового (для ламп накаливания с резьбовым цоколем).

Если осветительный прибор исправен, то тестер издаёт звук, а на ЖК-дисплее появляется число в пределах 3-200 Ом.

Компактную люминесцентную (КЛЛ) и светодиодную лампу таким способом не протестируешь, из-за наличия внутри электронной схемы. Отдельно можно проверить пригодность только стеклянную спираль КЛЛ. Для этого её нужно аккуратно отделить от цокольной части и прозвонить две пары проволочных выводов, идущих на плату электронного балласта.

В режиме проверки сопротивления

Существует ещё один, более точный, метод диагностики спиральных ламп с помощью мультиметра. Им можно не только определить пригодность лампочки, но и узнать её сопротивление. Зачем это нужно? Например, заводской отпечаток на колбе лампы накаливания стёрт. Следовательно, её мощность неизвестна. Данный способ поможет решить эту проблему.

Теперь о том, как проверить лампочку мультиметром в режиме сопротивления. Для этого нужно перевести переключатель на позицию с пределом 200 Ом, а затем коснуться щупами электрических контактов лампы точно так же, как в режиме прозвонки. В этом случае звуковой сигнал отсутствует, а на ЖК-дисплее появится значение сопротивления в Омах. Если на табло осталась «1», то внутри осветительного прибора обрыв.

По измеренному сопротивлению спирали в холодном состоянии можно сделать вывод о её мощности. В нами составленной таблице приведены данные об основных типах ламп, применяемых в быту.

Поделитесь в социальных сетях:FacebookTwitterВКонтакте
Напишите комментарий