Задачи устройства заземления
Заземлитель автоцистерн — прибор, позволяющий избежать искрения при работе с горючими материалами. Основная задача устройства — обеспечить в цепи заземления контроль сопротивления, чтобы отвести заряд статического электричества.
Особенно интенсивно статические заряды образуются при низком уровне влажности. Влажный воздух отличается высокой электропроводностью, позволяющей зарядам протекать через него. В результате во влажной среде электростатические заряды менее вероятны, а при уровне влажности выше 85 % практически не возникают.
Чтобы предотвратить аварийные ситуации, возникшие из-за искрения, на автозаправочных станциях устанавливаются заземлительные контуры. В общий контур интегрируются устройства заземления автоцистерн. УЗА — лишь элемент общей системы, а не замена заземляющей цепи.
К задачам устройств защиты автоцистерн относят:
- Мониторинг целостности заземлительного проводника.
- Контроль показателей сопротивления на контактных участках.
- Оповещение работников о повреждении проводника и повышенном сопротивлении. О тревожной ситуации персонал извещается звуковыми и световыми сигналами.
- Автоматическое отключение насосного оборудования при возникновении аварийных ситуаций.
Конструкция
Конструкция прибора включает индикаторный блок и двухжильный заземлительный кабель. УЗА, предназначенные для питания от внешних источников, дополнительно комплектуются блоком питания с встроенным в схему реле. Все оборудование предлагается во взрывозащищенном исполнении.
Индикатор состоит из красного светового диода со 180-градусным обзором и микрочипа-контроллер. Чип отгорожен от внешней среды компаундной заливкой. Отдельные модели индикаторов способны издавать звуковые сигналы.
Кабель заземления поставляется с парой одинаковых пружинных зажимов. С помощью фиксирующих устройств кабель монтируется на металлических участках цистерн. Толщина контактных поверхностей на автоцистернах должна составлять от 3 до 30 миллиметров, длина кабеля заземления — от 6 до 100 метров (зависит от модели оборудования).
Выпускается два типа приборов — спиральные и с использованием силиконовой оболочки. Различия между типами модификаций состоят в разном аппаратном обеспечении, климатическом исполнении, особенностях конструкции и дизайна.
Тип электропитания
По способу питания существуют три типа устройств, обеспечивающих безопасность при заправке автоцистерн:
- С автономным питанием. В составе прибора есть встроенный аккумулятор. Такие УЗА применяют как для установки в автоцистерны, так и для интеграции в системы заземления АЗС. В комплектации есть зарядное приспособление.
- Приборы для работы на постоянном токе напряжением 12 – 24 Вольт. Электропитание таких моделей осуществляется из бортовой сети бензовоза. Установка УЗА производится прямо на цистерну. Блок питания с выпрямителем может располагаться на автозаправочной станции.
- Устройства на переменном токе напряжением 220 Вольт. Встраиваются в систему заземления АЗС.
Маркировка
Все приборы подлежат маркировке с информацией, включающей такие данные:
- наименование устройства;
- дата изготовления;
- заводской номер;
- указание на взрывобезопасность (обозначается как Ex);
- класс защищенности от взрывов;
- товарный знак компании-производителя.
При небольших размерах маркировочного шильдика дополнительная информация указывается в сопроводительных документах к прибору.
Сюда включаются следующие данные:
- изображение знака обращения на территории стран-членов Таможенного Союза;
- номер сертификата соответствия и название организации, его выдавшей.
Схемы подключения
Защитное зануление: особенности и принцип действия
Чтобы выбрать оптимальный вариант необходимо знать, для каких целей применяется защитное заземление в конкретном случае. Ниже рассмотрены разные системы, их особенности, преимущества и недостатки.
Тип TN, с глухозаземленной нейтралью. По этой схеме подключается промышленное и бытовое оборудование, работающее в сетях с напряжением до и выше 1000 V. Нейтраль генератора (трансформатора) источника питания подключается к заземлителю. Устройства потребителей, а точнее корпуса, экраны, шасси, подсоединяют к общему проводнику.
Если электрическая схема создана в соответствии с международными стандартами, то по надписям можно понять следующее. Латинской буквой «N» обозначают «нулевой» проводник, который используется для работы оборудования. Его так и называют, функциональным. «PE» – проводник, использующийся для создания защитной цепи. Буквами «PEN» обозначают проводник, предназначенный для решения функциональных и защитных задач.
Чаще всего используют следующие схемы. Их наименования отличаются буквой, которую через дефис добавляют к «TN».
Схемы подключения
Система | Принцип работы | Преимущества, недостатки, особенности |
C | В системе «С» проводник выполняет рабочие и защитные функции одновременно. В качестве примера можно вспомнить типовое трехфазное электропитание с глухозаземленной нейтралью, являющейся нулевым проводом. | Эта схема относительно проста и экономична. Корпуса устройств потребителей подключают непосредственно к нейтрали. Недостатком является утеря защитных свойств, если электрическая цепь разорвана. Такое повреждение нельзя исключить при аварийном повышении тока, нагреве и разрушении проводника. В такой ситуации на корпусе появится опасное напряжение. При использовании таких систем особо тщательно подбирают автоматы, которые должны быстро и надежно отключать питающее напряжение. |
S | В этой схеме используются два раздельных нулевых проводника, рабочий и защитный. | Несколько проводников увеличивают стоимость системы, но существенно повышают надежность защиты. |
C-S | Это – комбинированная система. Генерирующий источник подсоединяется к глухозаземленной нейтрали. К потребителю идут только четыре проводника (трехфазное питание). В объекте недвижимости добавляется защитный проводник «PE». | Низкая по сравнению с предыдущим вариантом стоимость сопровождается меньшей надежностью. При повреждении проводника на участке до объекта (или к «PE») защитные функции будут утрачены. В соответствии с действующими нормами при использовании таких систем требуется предотвратить механическое повреждение соответствующих проводников. |
Наиболее часто используемые схемы подключения
Достаточно высокие риски возникают при использовании воздушных линий электропередач. Они могут быть повреждены ураганом, иными негативными внешними воздействиями. Для обеспечения высокого уровня безопасности применяют схему TT.
Глухозаземленную нейтраль подсоединяют к генератору. Передача энергии осуществляется по четырем проводам. У потребителя устанавливают автономную систему заземления, к которой подключаются корпуса оборудования.
IT – последняя схема на рисунке. Здесь нейтральный провод генератора (другого источника) изолирован. Корпуса электрических установок заземлены. Подобные решения применяются часто в исследовательских центрах, чтобы паразитные наводки не искажали показания чувствительной аппаратуры.
ТРЕБОВАНИЯ ПУЭ К ОБУСТРОЙСТВУ И КАЧЕСТВУ ЗАЗЕМЛЕНИЯ
Для реализации такой защиты от поражения электрическим током требуется обеспечить надежный контакт корпуса электроустановки с землей.
При его наличии опасный для человека токовый заряд стекает в грунт через заземляющее устройство, сопротивление которого значительно ниже, чем у человеческого тела.
ВИДЫ ЗАЗЕМЛЯЮЩИХ УСТРОЙСТВ
Согласно требованиям ПУЭ, корпуса электрооборудования для обеспечения безопасности обязательно заземляются. Для этого используются различные виды заземлителей.
В качестве готовых допускается использовать:
- уложенные в землю металлоконструкции, непосредственно соприкасающиеся с ней;
- металлические кожуха и оболочки кабелей, укладываемых в грунте с конкретными целями;
- металлические трубопроводы (кроме газовых коммуникаций и нефтепроводов);
- ж/д рельсы.
Использование готовых конструкций в качестве заземлителей заметно упрощает и удешевляет процесс обустройства всей системы.
Специально монтируемые заземляющие устройства применяются когда нет возможности задействовать уложенные под землей трубы, кабельные коммуникации или элементы металлоконструкций.
Они представляют собой различные конструктивные элементы, размещаемые в грунте на определенной глубине и обеспечивающих надежный контакт с почвой.
Самый простой вариант такого заземлителя стальной стержень длиною не менее 2,5 метров. После его заглубления к оголовку крепится толстая медная жила (стальная полоса), подключаемая к системе заземления.
СОПРОТИВЛЕНИЕ ЗАЗЕМЛЕНИЯ
Основное требование к заземлителю, независимо от его типа – обеспечить условия для стекания опасных для человека зарядов в почву. Его функциональность оценивается сопротивлением растекания (чем оно меньше – тем более эффективно действует заземление).
Основными составляющими при этом являются сопротивления:
- самого заземлителя;
- переходное (контактное) между заземлителем и грунтом;
- грунта в месте контакта с заземляющим устройством.
Согласно ПУЭ сопротивление типового устройства, обустраиваемого на потребительской стороне, не должно превышать 30 Ом. При особых условиях эксплуатации оборудования (на силовых подстанциях, в частности) оно нормируется на уровне не более 4 Ом.
Достигнуть нормируемых показателей удается за счет принятия специальных мер. Как правило, они сводятся к следующим приемам:
- увеличение площади контакта элементов искусственных заземлителей с грунтом;
- улучшение проводимости грунта (за счет увлажнения или добавления химикатов).
Кроме того, требованиями ПУЭ предписывается периодические замеры сопротивления заземления на соответствие действующим нормам.
* * *
2014-2022 г.г. Все права защищены.Материалы сайта имеют ознакомительный характер, могут выражать мнение автора и не подлежат использованию в качестве руководящих и нормативных документов.
УЗА 220В – особенности конструкции и эксплуатации
Устройство заземления автоцистерн УЗА 220В бывает двух типов, а именно: с внешним питанием и защищенным от взрыва блоком (УЗА-220В-БП-ВЗ) . Устройство с внешним питанием выполняет несколько основных функций:
- заземление цистерны;
- блокировка налива топлива в случае отсутствия заземления;
- индикация.
Оборудование обладает степенью защиты от пыли и влаги на уровне IP66, срок его эксплуатации составляет 15 лет.
УЗА-220В-БП-ВЗ состоит из трех основных элементов: проводника, индикатора и блока питания. Отличительной особенностью деталей является взрывобезопасное исполнение : например, предусмотрен специальный стальной корпус с оконцем для блока питания.
Также имеется пара кабельных вводов для проводов диаметром 5-10 мм при сечении, не превышающем 1,5 м2.
Все современные седельные тягачи Скания отличаются высокой грузоподъемностью, экономичным расходом топлива и надежным управлением. Как вы думаете — у какого карьерного самосвала грузоподъемность больше: у БелАЗ-75710 или у Liebherr T282B?
Защитное заземление
Благодаря электрическому соединению металлических конструкций оборудования промышленного и бытового назначения с землей повышается безопасность его эксплуатации. Этот способ защиты людей от поражения электротоком называется защитным заземлением. Даже если в цепи используются специальные автоматические устройства, скорость их работы не позволяет полностью обезопасить человека.
Принцип работы
Если фазный провод коснется металлической конструкции оборудования, то его корпус окажется под напряжением. Если этот вид защиты был организован правильно, то создается электроцепь с низким сопротивлением. В результате этот путь станет для тока более предпочтительным, прикосновение человека к корпусу окажется безопасным. Так кратко можно описать принцип действия защитного заземления.
Основные функции:
- Защита обеспечивается даже в ситуации, когда опасное напряжение на корпусе было образовано токами индукции, а не коротким замыканием.
- Использование глухозаземленной нейтрали позволяет получить при коротком замыкании длительные импульсы с большой амплитудой, способствующие срабатыванию защитной автоматики.
- Заземляющий проводник способен обеспечить надежную защиту оборудования при попадании в него молнии.
Схемы подсоединения
Для выбора оптимального варианта защиты следует разобраться в схемах организации заземления, а также их преимуществах и недостатках. Первый вид — глухозаземленная нейтраль (тип TN). Эта схема используется в бытовом и промышленном электрооборудовании, предназначенном для работы в сетях до 1 кВ. Для ее реализации нейтральный провод источника питания соединяется с заземлителем. Затем к общему проводнику подключаются корпус, экран и шасси.
Наибольшей популярностью пользуются три схемы, обозначающиеся соответствующей буквой:
- C — проводник выполняет одновременно защитную и рабочую функцию. Схема предельно проста в реализации, но при разрыве электроцепи теряет свои защитные свойства.
- S — применяется два отдельных нулевых провода. Стоимость схемы несколько выше, но ее надежность существенно увеличивается.
- C-S — комбинация двух предыдущих систем. При ее использовании необходимо принять меры по предотвращению механического повреждения защитных проводников, иначе схема перестанет выполнять свою функцию.
Еще одна схема реализации этого вида защиты — схема IT. Она активно применяется в исследовательских центрах, так как позволяет дополнительно устранить паразитные электрические наводки. Для уменьшения показателя сопротивления приходится сокращать длину проводника. Решается эта задача с помощью создания по периметру объекта специального заземляющего контура.
Категории заземлителей:
- Искусственные — изготавливаются специально для создания защитного заземления и не должны покрываться лакокрасочными материалами. Допускается использование в роли заземлителя электропроводящего бетона.
- Естественные — электропроводящие части сетей и коммуникаций строений, находящиеся в контакте с землей.
Назначение и устройство защитного заземления существенно отличается от функционального, поэтому их нельзя совмещать. Подробно вопросы организации защиты оборудования и людей от воздействия электротока изложены в особом документе «Правила устройства электроустановок».
Принцип защитного заземления
Защитное заземление – это комплекс мер, которые направлены на защиту оборудования и людей, которые с ним работают. Используется для устранения электромагнитных помех, возникающих из-за работающего рядом устройства, а также для нейтрализации помех при коммутации в цепи питания.
Защита от попадания молнии
Схема защиты дома от молний
Воздушная среда – это участок с большим сопротивлением, но разряд имеет мощность, превосходящую данное сопротивление, поэтому пробивает его. По пути следования из верхних слоев атмосферы к земле молния выбирает участки с наименьшим сопротивлением – мокрые участки, стены, деревья и капли воды. Этим объясняется тот факт, что разряды часто попадают в дерево – оно имеет сопротивление меньше, чем воздух вокруг. При попадании в здание ток также проходит по участкам с наименьшим сопротивлением – это металлические трубы, электрические приборы или их металлические детали, влажные стены. Если устройство не имеет заземления, прикосновение к нему в момент прохождения заряда может быть смертельным.
При установке молниеотвода на крыше заряд попадает в него, а далее движется в землю и нейтрализуется
Важно, чтобы токи не распространялись внутрь объекта, поэтому материалы, которые используются для обустройства заземления, имеют низкое сопротивление. По правилам оно не должно превышать показатель в 4 Ом. Сам молниеотвод должен быть соединен с электродами в грунте
Сам молниеотвод должен быть соединен с электродами в грунте.
Защита от импульсного перенапряжения
Устройства защиты от импульсных перенапряжений
Электронное оборудование чувствительно к скачкам напряжения или работающим в их радиусе мощным электрическим установкам. Повредить электронику может внезапно возникший разряд молнии вблизи.
В качестве примера: во время грозы может возникнуть избыточный заряд в медном кабеле, которыми соединены дома и по которым проходит ток. Заряд при увеличении его размера способен разрушить кабель. В этом случае на линии питания ставится УЗИП – устройство защиты от импульсного перенапряжения, чтобы избыток заряда стравливался в грунт.
Защита людей
Корпуса приборов, все металлические элементы способны проводить ток. Если коснуться незаземленного прибора, в котором накопилось статическое электричество, можно получить сильный удар. Это отразится прежде всего на сердечно-сосудистой и нервной системе. Снизить удар помогает резиновая обувь, прорезиненные перчатки, абсолютно сухое помещение, но люди редко ходят по квартире или офису в резиновых сапогах. Подключение третьего провода к корпусу приборов, а затем соединение его с электродами позволяет утилизировать в грунт лишний ток.
В старых частных и многоквартирных домах заземляющие мероприятия не проводились, поэтому все электрические приборы представляют потенциальную опасность для людей.
Назначение и принцип работы ЗУ
Заземляющее устройство (ЗУ) — это совокупность заземлителя и заземляющих проводников которые соединяют землю с электрическими приборами, машинами и электроустановками.
Главная задача ЗУ – создание надежного соединения для отвода напряжения с элементов, которые могут попасть под высокое напряжение.
Причиной тому чаще всего служат:
- молния;
- вынос потенциалов;
- вторичная индукция из-за влияния близко находящихся токоведущих частей.
Роль земли может выполнять грунт или вода в крупных водоемах и реках, каменноугольные выработки, и иные природные или рукотворные объекты с похожими свойствами.
Разделяют три вида заземления:
- рабочее зазмеление необходимо для нормального функционирования прибора или установки, которое пропускает через себя рабочий ток, составляющий часть тока в фазе трехфазной системы или в одном из полюсов постоянного тока;
- зануление заземление — нейтраль трехфазного генератора или трансформатора заземлена и от нее проложен нулевой провод, выполняющий одновременно функции рабочего и защитного зануления;
- заземление безопасности — главной задачей является уменьшение шагового напряжения и обеспечение электробезопасности. Это осуществляется путем снижения сопротивления каждого отдельного заземлителя и равномерным распределением потенциала по всей площади;
В трехфазных сетях с напряжением менее 1000 Вольт при наличии изоляции нейтрали в обязательном порядке требуется защитное заземление, и независимо от режима изоляции в сетях от 1000 Вольт.
В качестве заземляющего устройства может использоваться объекты естественного происхождения либо искусственные заземлители.
К первым относятся:
- конструкции домов и помещений, осуществляющие соединение с землей;
- фундаменты из железобетона — при наличии вокруг влажных грунтов (глинистые, суглинки и др.);
- подземные трубы различных систем, кроме теплотрасс и слущащих для транспортировки горючих материалов;
- оболочки кабеля из свинца.
Следует учитывать, что значение R (сопротивление) у естественных заземлителей можно узнать только путем проведения контрольных замеров, и если естественные элементы заземления будут иметь приемлемые показатели сопротивления, то конструировать что-то еще не нужно будет.
В качестве искусственных заземляющих устройств применяются элементы представляющие собой:
- стальные трубы от 3 см в диаметре и от 2 метров длинной;
- стальные полосы или угловая сталь не тоньше 0,4 см и длинной от 2 метров;
- длинные (до 10 м) стальные прутья диаметром от 1 см;
- обрезки труб из стали, рельс;
- металлические цепи, тросы.
Выбирая размеры электрода, обязательно учитывайте:
- значение сопротивления заземлителя при наименьшей массе — уровень сопротивления зависит в основном от длины электрода, и в наименьшей степени от его поперечного сечения;
- механическую устойчивость к подземной коррозии — показатель устойчивости к коррозии зависит от толщины и площади соприкосновения с грунтом.
Имея одинаковые сечения, в качестве более долговечных электродов служат круглые стержни. Для предотвращения коррозии в агрессивных щелочных и кислых почвах, используют медные, омедненные или оцинкованные материалы. На любых типах почв нельзя использовать алюминий, из-за окисления и последующей изоляции его поверхности.
Монтируют вертикальные электроды таким образом, чтобы верхний конец находился около поверхности грунта или глубже на 50-80 см — данный вариант обеспечивает более стабильную и эффективную защиту из-за небольших изменений удельного сопротивления грунта в разные периоды. Если одного электрода недостаточно для достижения необходимых технических параметров сопротивления растеканию, тогда устанавливают несколько электродов подряд или по периметру. Лучшую прочность во время углубления показывают трубы и уголки.
Вертикальные элементы чаще всего соединяются стальными стержнями, приваренными к верхним концам, реже с помощью пластин или колец.
Принцип работы
Контур заземления функционирует за счет способности грунта поглощать электрический заряд. Если корпус оборудования в результате пробоя изоляции оказался под напряжением, то заряд будет стекать в землю. Когда пользователь коснется корпуса, ток все равно будет двигаться по пути наименьшего сопротивления, то есть через заземление, а не через тело человека. Не будь заземления, в подобной ситуации пользователь получил бы электротравму.
Условием нормального функционирования заземления является низкое сопротивление заземлителя. Эта величина зависит от параметров грунта:
- плотность;
- влажность;
- соленость;
- площадь контакта с заземлителем.
Способность грунта впитывать заряд сильно падает при замерзании. Поэтому штыри заземлителя вбивают на глубину ниже отметки промерзания, зависящей от широты местности. Данные о глубине промерзания грунта для разных регионов Российской Федерации приведены в СНиП «Строительная климатология».
Наглядная демонстрация заземления
На каменистых, песчаных и вечномерзлых грунтах, в которые сложно заглубиться, применяют электролитические заземлители из Г-образной перфорированной трубы. Внутри содержится реагент, формирующий соленую среду. Последняя характеризуется высокой проводимостью и низкой температурой замерзания. Длинную часть заземлителя закапывают в неглубокую траншею, короткую выводят на поверхность. Ее используют трояко:
- для подключения шины заземления;
- для засыпки нового реагента;
- для заливки воды (провоцирует химическую реакцию в засушливый период).
Другой современный вариант заземлителя — модульный. Состоит из множества секций, соединяемых резьбовым или иным способом. По мере забивания в грунт навинчиваются все новые и новые секции. Так что такой заземлитель, в отличие от классического из нескольких штырей, можно установить на любую глубину. Соединяют секции по особым правилам и с применением токопроводящей пасты. При забивании используют особую насадку, защищающую резьбу от повреждений. Модули выполнены из стали и покрыты медью или цинком, отчего их сопротивление падает, а срок службы увеличивается.
Электролитический и модульный заземлители стоят дорого, потому их традиционные аналоги остаются востребованными. Штыри в такой конструкции располагают по-разному:
- в вершинах равностороннего треугольника рядом с объектом;
- по углам объекта;
- по периметру объекта.
Число стержней и расстояние между ними определяются расчетом.
Сопротивление заземлителя периодически проверяют. Максимально допустимая величина — 30 Ом.
Как обыкновенный человек может попасть под действие тока в собственном жилище, на производстве и в любом другом месте: краткое пояснение физических процессов
Правила безопасности учитывают несколько вариантов развития подобных событий и предлагают технические решения для спасения от них
Это важно хорошо понимать
Какие опасности скрыты в схеме существующей бытовой сети
Современные квартиры буквально напичканы электрическими помощниками, облегчающими наш быт. Их производители стремятся максимально обезопасить пользователей, но от них не все зависит.
Любая техника имеет ограниченный ресурс, а качество ее изготовления, складского хранения и эксплуатации не всегда соответствует техническим нормативам. Поломки возникают случайно в самых неожиданных местах.
Например, через сгоревший ТЭН с нарушенной изоляцией фаза элементарно распространяется через окружающую его водную среду в стиральной или посудомоечной машине.
Подобное повреждение диэлектрического слоя происходит довольно часто. При включении электрического прибора с нарушенной изоляцией высокий потенциал фазы переходит на токопроводящий корпус.
Стоит человеку до него дотронуться, как он попадает под напряжение, а через его тело начинает протекать опасный ток.
Его величина по закону Ома ограничивается только общим сопротивлением участка цепи, которое носит случайный характер. Сила протекающего тока может иметь значения от десятых долей ампера и значительно больше. Исход получения электротравмы предсказуем.
Если же корпус бытового прибора надежно заземлен, то картина протекания тока через человека резко меняется.
Сопротивление заземляющего контура строго регламентируется и поддерживается на безопасном пределе. За счет этого потенциал фазы стекает с корпуса. Когда к нему дотронется человек, то создаваемая нагрузка через его тело своей силой не сможет причинить большого вреда организму.
А чтобы его еще уменьшить в схему вводятся:
- автоматические выключатели, реагирующие даже на перегруз, а не только короткие замыкания;
- дифференциальные автоматы и УЗО, срабатывающие от утечек.
Однако в этом вопросе тоже не все так просто, ибо даже правильно настроенный автомат может банально не сработать из-за того, что при его выборе Таких случаев встречается много: проводка выгорает (возможно и здание), а защита не отрабатывает.
По этой причине включение УЗО в схему обязательно: оно отработает от возникшей утечки.
Как можно получить удар током от случайных источников напряжения
Жилые и производственные помещения содержат в своей конструкции не только закрытое изоляцией электрическое оборудование, но и массу технических систем (водопроводы, газопроводы, антенны, воздуховоды, арматура стен, рельсы и шахты лифтов…) выполненных из стальных или иных токопроводящих материалов.
В силу различных обстоятельств на них может быть подано напряжение (удар молнии, пробой изоляции бытовой сети, ошибки электриков или домашних мастеров…).
Когда человек прикоснётся к такому предмету, то через него может потечь опасный разряд.
Его величина не предсказуема, зависит от многих случайных факторов, но она весьма опасна для жизни.
Поэтому все токопроводящие магистрали, даже не относящиеся к электрической схеме, подключаются к контуру заземления здания. Такое их соединение называется ОСУП — основная система уравнивания потенциалов. Она призвана надежно отводить случайно появляющийся опасный потенциал из зоны обитания людей.
В многоэтажных зданиях современного панельного или монолитного строительства подобные технические системы, например, трубопроводы различного назначения имеют большую протяженность, достигая нескольких сотен метров.
Если через них станет проходить ток большого разряда, то на такой длине, имеющей увеличенное сопротивление, возникает падение напряжения. Оно тоже опасно для людей, поэтому подлежит снижению.
С этой целью во всех квартирах все токопроводящие части, не относящиеся к электрической схеме (трубы, краны, батареи, даже акрилловые ванны, собирающие статическое электричество), тоже подлежат подключению к контуру заземляющего устройства здания.
Такое соединение называется ДСУП или дополнительная система уравнивания потенциалов.
Здесь тоже важно использовать защиты типа УЗО или дифавтоматы. Все эти процессы важно представлять для того, чтобы не совершать грубых ошибок и не нарушать действующие правила безопасности.
Все эти процессы важно представлять для того, чтобы не совершать грубых ошибок и не нарушать действующие правила безопасности.
А как работает заземляющая конструкция в этих ситуациях я рассказываю дальше.