Как нужно заземлить металлические опоры наружного освещения?
У многих возникает вопрос: “Надо ли заземлять металлические опоры освещения?”
Согласно нормам электробезопасности, инструкции по молниезащите и устройству сетей заземления, все стальные опоры, используемые для обустройства систем наружного освещения, нужно заземлить.
ПУЭ п.6.1.45. При выполнении защитного заземления осветительных приборов наружного освещения должно выполняться также подключение железобетонных и металлических опор, а также тросов к заземлителю в сетях с изолированной нейтралью и к РЕ (PEN) проводнику в сетях с заземленной нейтралью.
Принцип действия защитного заземления заключается в том, что в случае нарушения изоляции электрический ток стекает на землю. Таким образом, в зоне растекания распределяются не опасные для человека напряжения, зависящие от удельного сопротивления почвы и расположения заземлителя. В том случае, если уличное освещение устанавливается в сетях с изолированной нейтралью, штыри или крюки фазных проводов на железных опорах, а также арматура и любые металлические конструкции должны быть заземлены при помощи специальных устройств – заземляющего контура, состоящего непосредственно из заземлителей и заземляющих проводников. Фундаменты под опоры не являются заземлителями, т.к. покрыты спецмастикой от корозии, имеющей диэлектрические свойства.
Как заземлить опору освещения?
Заземлители представляют собой специальные элементы, которые устанавливаются в грунте и могут быть в виде стержней – металлических прутков, так и в виде стальных полос (см. чертеж заземления опоры освещения треугольным контуром заземления). Вертикальные стержни забиваются на глубину до 3 метров, при этом их верхняя часть заземлителя должна устанавливаться приблизительно на расстоянии пол метра от основания почвы. На такой же глубине располагаются и горизонтальные проводники заземлителя, которые, чаще всего, применяются на каменистых почвах. При монтаже заземлителей, проводники, используемые для подсоединения контура заземления должны иметь диаметр как минимум 6 мм. Соединяются между собой заземляющие проводники и заземлители монтажной сваркой, а места соединений окрашиваются краской. Если наружное освещение устанавливается в сетях с заземленной нейтралью, штыри и крюки фазных проводов на металлических опорах, а также арматура и любые металлические конструкции должны подсоединяться к нулевому рабочему проводу. Как правило, это выполняется при помощи специального болта приваренного непосредственно к опоре или проушины. Таким образом, заземление металлических опор уличного освещения с кабельным питанием производится: • В сетях с изолированной нейтралью посредством использования металлической оболочки кабеля; • В сетях с заземленной нейтралью через нулевую жилу, которая соединена с оболочкой кабеля. Для контроля заземления опор уличного освещения после проведения всех электромонтажных работ следует провести замер сопротивления заземляющего устройства с помощью специального прибора. Значение сопротивления не должно быть выше 50 Ом. Заземление осветительных опор может выполнять функции молниезащиты
Особенно это важно, когда опора уличного освещения устанавливается вдали от зданий на открытых площадках. В силу конструктивных габаритов, то есть значительного возвышения над землей, осветительные опоры подвергаются большему воздействию различного вида погодных явлений, чем остальные составляющие пейзажа; высота опоры может достигать от 3 до 11 метров, в силу чего одна из первых и принимает на себя электроразряд
Особенно это актуально для мест, особо подверженных попаданию разряда. Ведь в случае попадания молнии в опору без заземления перенапряжение может возникнуть в целом по сети, что может привести к серьезным последствиям.
Например, представим ситуацию: молния всё же ударила в опору освещения (независимо от того есть там молниеприёмник или нет). Куда пойдёт ток молнии? Если связи с землёй нет вообще, то весь импульс молнии уйдёт в электрическую сеть. Вывод: заземлять опоры надо (причём лучше каждую) как минимум для отвода тока молнии; в подстанции откуда питается уличное освещение необходимо предусматривать хорошую защиту от перенапряжения вторичных проявлений молнии.
Особенности системы
Система наружного освещения является очень важной составляющей в любом населенном пункте, а также на частном приусадебном участке. Особенно, если он имеет немаленькие размеры
От уличного освещения, созданного с помощью специальных типов светильников, требуется выполнение следующих функций:
- создание необходимого уровня подсветки приезжей части;
- подсветка тротуаров;
- обеспечение необходимого уровня освещенности на территории, вблизи заборов и других ограждений (для частных домов);
- создание единой системы освещения и сигнализации. Здесь применяется датчик движения и другие элементы охранных систем.
Подсветка дороги
Чтобы светильники наружного типа работали качественно и продолжительный период времени, необходимо следовать требованиям ПУЭ. При этом большое значение здесь имеет защитное заземление светильников. Чтобы сделать правильное заземление, нужно четко представлять себе весь этот процесс. Поэтому здесь большая роль отводится именно защитной функции элементов наружного освещения.
Наиболее часто светильники наружного типа работы устанавливаются на металлических или железобетонных опорах, которые тянутся вдоль дорог и трауров. В последнее время все чаще для организации наружного освещения используются металлические опоры. Это связано со следующими преимуществами таких видов опор:
- возможность применять в различных климатических зонах;
- такие опоры могут выдержать большую статическую нагрузку;
- имеют красивый и эстетичный внешний вид;
- срок службы более продолжительный, чем у железобетонных конструкций;
Металлические опоры на дорогах
При использовании светильников на металлических опорах необходимо знать, что неправильное их защитное заземление (или более того, его отсутствие), может привести к серьезным электротравмам человека, который просто прикоснулся к опоре. А поскольку такие конструкции установлены по всему городу, то пострадать могут не только взрослые, но и дети.
Повторное заземление на вводе в здание
Людмила Казанцева, ведущий специалист ОАО «НИИПроектэлектромонтаж», г. Москва Виктор Шатров, сотрудник Госэнергонадзора Минэнерго России, г. МоскваПУЭ, п. 1.7.55 Для заземления в электроустановках разных назначений и напряжений, территориально сближенных, следует, как правило, применять одно общее заземляющее устройство. Заземляющее устройство, используемое для заземления электроустановок одного или разных назначений и напряжений, должно удовлетворять всем требованиям, предъявляемым к заземлению этих электроустановок: защиты людей от поражения электрическим током при повреждении изоляции, условиям режимов работы сетей, защиты электрооборудования от перенапряжения и т. д. в течение всего периода эксплуатации. В первую очередь должны быть соблюдены требования, предъявляемые к защитному заземлению. Заземляющие устройства защитного заземления электроустановок зданий и сооружений и молниезащиты 2-й и 3-й категорий этих зданий и сооружений, как правило, должны быть общими. При выполнении отдельного (независимого) заземлителя для рабочего заземления по условиям работы информационного или другого чувствительного к воздействию помех оборудования должны быть приняты специальные меры защиты от поражения электрическим током, исключающие одновременное прикосновение к частям, которые могут оказаться под опас-ной разностью потенциалов при повреждении изоляции. Для объединения заземляющих устройств разных электроустановок в одно общее заземляющее устройство могут быть использованы естественные и искусственные заземляющие проводники. Их число должно быть не менее двух.
Вопрос 1. Как понимать термин «территориально сближенных»?
ОТВЕТ. К «территориально сближенным» (отдельным) следует относить заземляющие устройства, которые расположены на таком расстоянии друг от друга, что между ними отсутствует зона нулевого потенциала. При наличии между заземляющими устройствами зоны нулевого потенциала такие заземляющие устройства обозначаются как «независимые».
Вопрос 2. Какие специальные меры должны быть приняты для защиты от поражения электрическим током, исключающие одновременное прикосновение к частям, которые могут оказаться под опасной разностью потенциалов при повреждении изоляции?
ОТВЕТ. В качестве специальных мер могут быть использованы, например, питание от разделительного трансформатора, применение двойной изоляции. В установках информационных технологий могут быть применены другие меры.
ПУЭ, п. 1.7.57 Электроустановки до 1 кВ жилых, общественных и промышленных зданий и наружных установок должны, как правило, получать питание от источника с глухозаземленной нейтралью с применением системы ТN. Для защиты от поражения электрическим током при косвенном прикосновении в таких электроустановках должно быть выполнено автоматическое отключение питания в соответствии с 1.7.78 -1.7.79. Требования к выбору систем ТN-С, ТN-S, ТN-С-S для конкретных электроустановок приведены в соответствующих главах Правил.
Вопрос 1. Каким образом выбирать необходимую систему, если в ПУЭ отсутствуют указания для конкретных видов установок?
ОТВЕТ. Если отсутствуют указания в главах ПУЭ или в других нормативных документах, выбор системы для конкретных видов электроустановок следует производить при проектировании. Предпочтительным является применение системы TN-C-S. В помещениях, в которых постоянно находится неквалифицированный персонал, следует использовать раздельные РЕ– и N-проводники. PEN-проводник может применяться в той части электроустановки, которая доступна только квалифицированному персоналу.
ПУЭ, п. 1.7.59 Питание электроустановок напряжением до 1 кВ от источника с глухо-заземленной нейтралью и с заземлением открытых проводящих частей при помощи заземлителя, не присоединенного к нейтрали (система ТТ), допускается только в тех случаях, когда условия электробезопасности в системе TN не могут быть обеспечены. Для защиты при косвенном прикосновении в таких электроустановках должно быть выполнено автоматическое отключение питания с обязательным применением УЗО. При этом должно быть соблюдено условие:
Основные требования к заземляющим устройствам
Правила устройства электроустановок (ПУЭ) 7 требуют производить заземление наружных опор освещения в обязательном порядке. Скрупулезный подход к процессу заземления обусловлен повышенной опасностью электроприборов, используемых в общественных местах. Если вам нужно спроектировать освещение объекта, установить и ввести в эксплуатацию осветительное оборудование с учетом всех требований безопасности, в соответствии с нормативными документами, то лучше обратиться к опытным специалистам, например, в ТПК “СЭТ” https://svetilniki-opory.com/.
Глава 1.7 ПУЭ 7 детально описывает требования к заземлению стальных опор с использованием двух видов нейтрали:
Глухозаземленной. Нулевой провод подсоединяется напрямую к заземляющему устройству (ЗУ).
Изолированной. Такой вариант подключения нейтрального провода предусматривает:
полное отсутствие соединения с заземляющим устройством;
присоединение к ЗУ через приборы сигнализации, измерения, защиты или другие аналогичные устройства с большим сопротивлением.
Изолированная нейтраль, в случае прикосновения к токопроводящим частям одного из проводов, минимизирует утечку тока. Благодаря этому сеть продолжит безопасную работу, давая время на поиск и устранение неполадок.
Заземленная нейтраль в схожей ситуации более опасна для человека, но способна провести большие токи при однофазном замыкании на землю (ОЗЗ). При коротком замыкании релейная защита автоматически отключает поврежденный участок.
Согласно нормам заземления, в роли заземляющих магистралей (электродов) могут выступать:
- металлические уголки или полосы толщиной не менее 4 мм;
- пруты диаметром от 10 мм, произведенные из обычной или оцинкованной стали;
- для изолированных нейтралей возможно применение многожильного провода с площадью сечения от 35 мм. кв.
Размеры электродов корректируются в зависимости от типа грунта в месте установки опоры. Подключение проводится с помощью перемычки и болтовых зажимов.
Заземляющие электроды могут располагаться в земле:
- Вертикально. Самый распространенный способ монтажа, подходит для грунта с плотным нижним слоем и более мягким верхним. Магистраль должна погружаться на глубину до 3 м.
- Горизонтально. Вариант применяется для сложных грунтов, не позволяющих установить магистраль вертикально. Электрод размещается на глубине от 0,5 до 1 м.
ПУЭ 7. Правила устройства электроустановок. Издание 7
2.4.38. На опорах ВЛ должны быть выполнены заземляющие устройства, предназначенные для повторного заземления, защиты от грозовых перенапряжений, заземления электрооборудования, установленного на опорах ВЛ. Сопротивление заземляющего устройства должно быть не более 30 Ом.
2.4.39. Металлические опоры, металлические конструкции и арматура железобетонных элементов опор должны быть присоединены к РЕN-проводнику.
2.4.40. На железобетонных опорах РЕN-проводник следует присоединять к арматуре железобетонных стоек и подкосов опор.
2.4.41. Крюки и штыри деревянных опор ВЛ, а также металлических и железобетонных опор при подвеске на них СИП с изолированным несущим проводником или со всеми несущими проводниками жгута заземлению не подлежат, за исключением крюков и штырей на опорах, где выполнены повторные заземления и заземления для защиты от атмосферных перенапряжений.
2.4.42. Крюки, штыри и арматура опор ВЛ напряжением до 1 кВ, ограничивающих пролет пересечения, а также опор, на которых производится совместная подвеска, должны быть заземлены.
2.4.43. На деревянных опорах ВЛ при переходе в кабельную линию заземляющий проводник должен быть присоединен к РЕN-проводнику ВЛ и к металлической оболочке кабеля.
2.4.44. Защитные аппараты, устанавливаемые на опорах ВЛ для защиты от грозовых перенапряжений, должны быть присоединены к заземлителю отдельным спуском.
2.4.45. Соединение заземляющих проводников между собой, присоединение их к верхним заземляющим выпускам стоек железобетонных опор, к крюкам и кронштейнам, а также к заземляемым металлоконструкциям и к заземляемому электрооборудованию, установленному на опорах ВЛ, должны выполняться сваркой или болтовыми соединениями.
Присоединение заземляющих проводников (спусков) к заземлителю в земле также должно выполняться сваркой или иметь болтовые соединения.
2.4.46. В населенной местности с одно- и двухэтажной застройкой ВЛ должны иметь заземляющие устройства, предназначенные для защиты от атмосферных перенапряжений. Сопротивления этих заземляющих устройств должны быть не более 30 Ом, а расстояния между ними должны быть не более 200 м для районов с числом грозовых часов в году до 40, 100 м – для районов с числом грозовых часов в году более 40.
Кроме того, заземляющие устройства должны быть выполнены:
1) на опорах с ответвлениями к вводам в здания, в которых может быть сосредоточено большое количество людей (школы, ясли, больницы) или которые представляют большую материальную ценность (животноводческие и птицеводческие помещения, склады);
2) на концевых опорах линий, имеющих ответвления к вводам, при этом наибольшее расстояние от соседнего заземления этих же линий должно быть не более 100 м для районов с числом грозовых часов в году до 40 и 50 м для районов с числом грозовых часов в году более 40.
2.4.47. В начале и конце каждой магистрали ВЛИ на проводах рекомендуется устанавливать зажимы для присоединения приборов контроля напряжения и переносного заземления.
Заземляющие устройства защиты от грозовых перенапряжений рекомендуется совмещать с повторным заземлением РЕN-проводника.
2.4.48. Требования к заземляющим устройствам повторного заземления и защитным проводникам приведены в 1.7.102, 1.7.103, 1.7.126. В качестве заземляющих проводников на опорах ВЛ допускается применять круглую сталь, имеющую антикоррозионное покрытие диаметром не менее 6 мм.
2.4.49. Оттяжки опор ВЛ должны быть присоединены к заземляющему проводнику.
Требования СО 153-34.21.122-2003
Помимо вопросов, касающихся обустройства молниезащиты на государственных объектах любой формы собственности, в инструкции под данным обозначением рассматривается порядок подготовки и хранения всех сопровождающих документов.
Документация
Подготавливаемая при этом исполнительная документация должна включать в свой состав полный комплект расчётов, схем, чертежей и пояснительных записок, определяющих порядок монтажа специального оборудования в пределах защищаемой зоны.
При её подготовке должны учитываться как расположение здания на генеральном плане застройки (с учётом прокладываемых коммуникаций), так и климатические условия в данной местности.
Сдача объекта
Кроме того, этим документом устанавливается общий порядок технической приёмки комплексов молниезащиты, а также особенности сдачи их в эксплуатацию. Особо оговаривается, что для приёмки здания или сооружения назначается специальная комиссия, состоящая из представителей исполнителя и заказчика, а также инспектора пожарной службы.
По результатам изучения представленной разработчиком документации оформляются акты приёмки и допуска оборудования молниезащиты в эксплуатацию.
После этого на каждое отдельное устройство обязательно оформляются специальные рабочие паспорта (на всю систему и заземлитель), которые остаются у лица, ответственного за электрохозяйство объекта.
Проверка
В разделах инструкции, касающихся эксплуатации введённых в действие устройств молниезащиты отдельно оговаривается, что порядок их содержания и обслуживания определяется основными положениями ПУЭ. При этом с целью поддержания систем в рабочем состоянии должны проводиться ежегодные проверки всех её составляющих.
Такие освидетельствования организуются перед началом сезона гроз, а также после внесения в конструкцию молниезащиты каких-либо изменений и усовершенствований.
Как сделать заземление правильно в квартире
Чтобы ответить на этот вопрос необходимо понимать какая система защиты установлена именно в вашем доме.
Как правило в старых домах советской постройки применялась Система TN-C, в которой нулевой защитный и нулевой рабочий проводники, объединены в один PEN проводник, и они совмещены на всем протяжении системы. Узнать такую систему можно по двухжильному кабелю, который проложен по квартире и по четырехжильному в общем щитке.
Если говорить честно, как правильно сделать заземление именно в квартире в старом фонде, то такая система защищает только от короткого замыкания и возрастает вероятность получения удара током. Поэтому говорить о защитном заземлении в данном случае необходимо с некой долей риска. Есть несколько рабочих вариантов, которые снижают риски, но при этом не являются полноценной защитой, и делаются на ваш страх и риск.
В современных многоквартирных домах используется система TN-S, в ней проводники N и PE разделены на всём протяжении от подстанции до потребителя. Эта система самая безопасная и предпочтительная, но применяется только в новых электроустановках из-за высокой стоимости. В большинстве домов сейчас используется система TN-C-S, в которой проводники N и PE после подстанции соединены в один провод PEN, а потом, на вводе в здание, разделены.
В данном случае организовать защитное заземление можно на этапе монтажа электрики используя трехжильные провода, розетки с заземлением и защитную автоматик. При попадании фазы на корпус прибора должен сработать защитный автомат. При касании токоведущих частей должен сработать УЗО.
Для разводки электричества советую выбрать кабель с тремя жилами в двойной изоляции, лучше ВВГ НГ, для розеточных групп сечением 3 на 2.5 для световых групп 3 на 1.5. Один конец провода заводится под свободный болт шины распределительного щита, соединенной с корпусом щита, а второй — на «заземляющий» контакт розетки. Одновременно со сборкой квартирного щитка электрики проверьте подключение заземляющего провода в общем домовом щитке.
Схематично схему защитного заземления в ванной квартире можно представить следующим образом.
Как заземлить светильник
Итоги предыдущего раздела:
- Светильники классов защиты 0 и III не используют заземление;
- Светильники класса защиты I должны подключаться к защитному заземлению для исключения поражения электрическим током;
- Светильники класса защиты II могут использовать (редко, и к тому же не для обеспечения собственной защиты), а могут и не использовать (значительно чаще) заземление.
Теперь, когда появилась ясность, кого подключать, а кого нет – остановимся подробнее на подключении светильников класса I к заземлению. Если прибор подключается к электрической сети посредством кабеля, то, как правило, провод или клемма для подключения уже имеют заземляющую жилу или контакт и достаточно просто соединить их с соответствующими проводниками подводного кабеля.
Гермоввод и терминал заземления на светодиодном светильнике
В некоторых случаях светильники имеют дополнительные контакты для подключения заземления на корпусе – обычно это специальные винтовые терминалы, обозначенные буквами PE или значками заземления. В отдельных случаях, когда прибор состоит из нескольких соединённых между собой частей (например, кронштейны у некоторых консольных светильников), все эти части также соединяются между собой проводниками для уравнивания потенциала и затем все вместе – к заземлению.
Обратите внимание, что безопасность светильника даже при подключенном заземлении обеспечивается только при правильной его установке, поэтому следуйте в этом вопросе инструкциям производителя
Глава 6.1. Общая часть.
Защитные меры безопасности.
6.1.37. Защитное заземление установок электрического освещения должно выполняться согласно требованиям гл. 1.7, а также дополнительным требованиям, приведенным в пп. 6.1.38-6.1.47, 6.4.9 и гл. 7.1, 7.2, 7.3, 7.4.
6.1.38. Защитное заземление металлических корпусов светильников общего освещения с лампами накаливания и с лампами люминесцентными, ДРЛ, ДРИ, ДРИЗ, натриевыми со встроенными внутрь светильника пускорегулирующими аппаратами следует осуществлять:
1. В сетях с заземленной нейтралью — присоединением к заземляющему винту корпуса светильника РЕ проводника.
Заземление корпуса светильника ответвлением от нулевого рабочего провода внутри светильника запрещается.
2. В сетях с изолированной нейтралью, а также в сетях, переключаемых на питание от аккумуляторной батареи, — присоединением к заземляющему винту корпуса светильника защитного проводника.
При вводе в светильник проводов, не имеющих механической защиты, защитный проводник должен быть гибким.
6.1.39. Защитное заземление корпусов светильников общего освещения с лампами ДРЛ, ДРИ, ДРИЗ, ДНаТ и люминесцентными с вынесенными пускорегулирующими аппаратами следует осуществлять при помощи перемычки между заземляющим винтом заземленного пускорегулирующего аппарата и заземляющим винтом светильника.
6.1.40. Металлические отражатели светильников с корпусами из изолирующих материалов заземлять не требуется.
6.1.41. Защитное заземление металлических корпусов светильников местного освещения на напряжение выше 50 В должно удовлетворять следующим требованиям:
1. Если защитные проводники присоединяются не к корпусу светильника, а к металлической конструкции, на которой светильник установлен, то между этой конструкцией, кронштейном и корпусом светильника должно быть надежное электрическое соединение.
2. Если между кронштейном и корпусом светильника нет надежного электрического соединения, то оно должно быть осуществлено при помощи специально предназначенного для этой цели защитного проводника.
6.1.42. Защитное заземление металлических корпусов светильников общего освещения с любыми источниками света в помещениях как без повышенной опасности, так и с повышенной опасностью и особо опасных, во вновь строящихся и реконструируемых жилых и общественных зданиях, а также в административно-конторских, бытовых, проектно-конструкторских, лабораторных и т.п. помещениях промышленных предприятий (приближающихся по своему характеру к помещениям общественных зданий) следует осуществлять в соответствии с требованиями гл. 7.1.
6.1.43. В помещениях без повышенной опасности производственных, жилых и общественных зданий при напряжении выше 50 В должны применяться переносные светильники класса I по ГОСТ 12.2.007.0-75 «ССБТ. Изделия электротехнические. Общие требования безопасности».
Групповые линии, питающие штепсельные розетки, должны выполняться в соответствии с требованиями гл. 7.1, при этом в сетях с изолированной нейтралью защитный проводник следует подключать к заземлителю.
6.1.44. Защитные проводники в сетях с заземленной нейтралью в групповых линиях, питающих светильники общего освещения и штепсельные розетки (пп. 6.1.42, 6.1.43), нулевой рабочий и нулевой защитный проводники не допускается подключать под общий контактный зажим.
6.1.45. При выполнении защитного заземления осветительных приборов наружного освещения должно выполняться также подключение железобетонных и металлических опор, а также тросов к заземлителю в сетях с изолированной нейтралью и к РЕ (PEN) проводнику в сетях с заземленной нейтралью.
6.1.46. При установке осветительных приборов наружного освещения на железобетонных и металлических опорах электрифицированного городского транспорта в сетях с изолированной нейтралью осветительные приборы и опоры заземлять не допускается, в сетях с заземленной нейтралью осветительные приборы и опоры должны быть подсоединены к PEN проводнику линии.
6.1.47. При питании наружного освещения воздушными линиями должна выполняться защита от атмосферных перенапряжений в соответствии с гл. 2.4.
6.1.48. При выполнении схем питания светильников и штепсельных розеток следует выполнять требования по установке У 30, изложенные в гл. 7.1 и 7.2.
6.1.49. Для установок наружного освещения: освещения фасадов зданий, монументов и т.п., наружной световой рекламы и указателей в сетях TN-S или TN-C-S рекомендуется установка УЗО с током срабатывания до 30 мА, при этом фоновое значение токов утечки должно быть, по крайней мере, в 3 раза меньше уставки срабатывания УЗО по дифференциальному току.
Оглавление | Предыдущая глава | Следующая глава | Вернуться в библиотеку |
Методика определения ноля и заземления
В ходе работы с зануленными электрическими частями, нередко возникает вопрос, как определить ноль и заземление. Для этого существует специальная методика, принцип которой, мы объясняем для читателей доступным языком
Сразу обращаем внимание новичков, если вам требуется установить прибор в домашних условиях, определять ноль, фазу и заземление необходимо в месте крепления
Существует самая простейшая методика, по которой определяется заземление — это использование цветовой маркировки, однако и этот способ является не всегда надежным.
Начнем методику при помощи специальной лампы. Но для начала соберем ее в единое целое;
Берем обычный патрон и вкручиваем в него подходящую лампу накаливания;
На клемму гнезда крепим провода и избавляем их концы от изоляционного слоя при помощи стриппера;
Теперь поочередно соединяем провода лампы с поддающимися определению жилами, если лампочка загорится, значит, вы нашли фазу
В ситуации с двухжильными кабелями дело обстоит намного проще, вам важно найти лишь фазу, при находке которой лампочка загорается, следовательно, оставшийся проводник — это нейтраль.
Что бывает при обрыве нуля в поводке
Устранение проблемы
Здесь нужно исходить из ситуации, где пропал свет, во всей квартире или только в отдельных комнатах. Первый случай мы рассматривать не будем, так как это отдельная история.
Во втором, когда появилось две фазы в розетках, важно понять, где произошел обрыв нуля. Сразу это место выявить сложно поэтому нужно идти по пути наименьшего сопротивления. Но забегая на перед, сразу скажем – в нашей ситуации обрыв нуля произошел в стене
Но забегая на перед, сразу скажем – в нашей ситуации обрыв нуля произошел в стене.
Для успокоения души можно конечно посмотреть основной щит на лестничной площадке, но так как свет в квартире пропал только частично, причину проблемы можно там не искать. Если конечно туда из квартиры не идет несколько нулевых проводов, а не один общий.
Далее переходим на щиток с пакетными выключателями (у вас может быть другой) в квартире.
Как правило, каждый пакетник отвечает за отдельную линию, идущую на:
- Розетки в комнатах;
- Освещение в комнатах и коридоре;
- Бойлер;
- Электродуховку (не менее 16А);
- Освещение в ванной, туалете, на кухне:
- Розетки в коридоре, ванной и на кухне.
Это все приблизительно, у каждого может быть по-разному. Соответственно, для каждой линии есть свой нулевой провод.
Т.е. если две фазы в розетках появились на одной линии, то еще не все потеряно, можно взять и временно использовать удлинитель подключив его к розетке на рабочей линии, к примеру, на кухне или коридоре.
Далее находим тот пакетник, который отвечает за линию, где пропало напряжение и появились две фазы. С помощью пробника это сделать не сложно.
Для убедительности делаем замеры мультиметром, показание «0» только подтвердит нашу гипотезу.
Искать на шине нулевой провод отвечающий за проблемную линию нет смысла, он все равно сразу уходит в стену. Нужно просто отключить все пакетники (в целях мер безопасности) проверить на целостность, а потом зачистить все нулевые провода и саму шину. Если проблема была там, то она устранится.
Если это не помогло, идем дальше. В нашем случае нулевой медный провод желто-зеленного цвета сразу, минуя распределительную коробку, уходил на розетку, но там уже подходил медный черный провод. Т.е. где-то в стене они соединены и есть большая вероятность, что, обрыв нуля произошел именно там.
В вашем случае ноль может идти к розетке через распределительную коробку. Все это проверяется пробником.
Находим в распредкоробке данный провод, проверяем его состояние и, если нужно зачищаем. Не забудьте отключить напряжение в сети. Далее переходим к розетке и проделываем тоже самое.
Если профилактическая зачистка контактов не помогла, а провода в хорошем состоянии, значит ноль обгорел где-то в стене и это уже проблема.
Найти это место сложно, долбить стену ради нескольких неработающих розеток нет смысла. Какой же выход?
В нашем случае выход был найден следующий:
- От первой розетки, к которой подходило напряжение от щитка и где были две фазы, нулевой провод был отсоединен и заизолирован.
- Было приобретено 5 метров двухжильного алюминиевого провода (самый дешевый вариант) с сечением одной жилы 1.5 мм.
- Найдена ближайшая распределительная коробка, которая запитывалась от другого пакетника (шла на освещение) и в которой был рабочий ноль.
- Алюминиевый провод был подсоединен к рабочей нулевой шине в распредкоробке и подведен напрямую (для теста) к первой розетке неработающей линии, но пока еще не подсоединен к ней.
- Включив пакетник подаем напряжение на фазовый провод розетки и с помощью мультиметра замеряем разность потенциалов между ним и новым нулевым проводом. Оно должно быть около 220В. В нашем случае так и было.
- Убедившись, что все работает, отключаем напряжение на щитке, надежно крепим провода, монтируем розетку на место, проводим новый нулевой провод под плинтусом.
Т.е. в реальности мы проложили новую нулевую линию вместо той, которая была в стене, а, чтобы не вести ее через всю квартиру к щитку, была найдена ближайшая работающая нулевая шина, в нашем случае в распредкоробке.
Хотя, если в квартире старая штукатурка и провода находятся под ней, то можно попытать счастья, как показано в видео.
Различные варианты действий
Существует множество способов и вариантов действий, как определить нулевой провод на люстре при выполнении работы по ее подключению к электропроводке в доме. Каждый пользователь, домашний мастер, а тем более – специалист, выбирают для себя, как правило, один из наиболее удобных методов и пользуются им в повседневной жизнедеятельности. Зачастую выбор происходит с учетом наличия или отсутствия тех или иных измерительный (контрольных) приборов. И если у профессионалов-электриков, такого «добра» с собой предостаточно, то у обычного собственника жилья выбор приспособлений (а вместе с ними и методов определения нуля или фазы) будет ограничен.
Стоит рассмотреть кратко все существующие методы, а уж затем каждый пользователь сумеет для себя определить оптимальный вариант.