Электрохимическая коррозия: как защитить полотенцесушитель?
Каждый хозяин знает, что ремонт в доме и квартире непрерывен. Не всем и не сразу удается учесть все детали и нюансы, да и в процессе ремонта каждый старается как можно быстрее, при этом долговечнее и качественнее все сделать. При это критерий «недорого» также частый путник того, кто начал ремонтные работы. Однако тому, кто уже столкнулся с его последствиями, известно, что дешево и долговечно – понятия антонимы. Потому лучше сразу отдать предпочтение лучшим материалам. Это относится ко всему, включая и полотенцесушитель.
Почему важно правильно использовать полотенцесушитель
Всем известно, что полотенцесушитель отвечает за поддержание комфортного температурного режима, а также за качественное высушивание белья. Значимость этого прибора замечают лишь в те моменты, когда она начинает выходить из строя. К сожалению, такие ситуации не редкость. При этом полотенцесушители могут легко подвергать электрокоррозии и протеканию.
Почему важно правильно использовать полотенцесушитель
Чем опасны протечки и электрокоррозия?
Сперва наперво эти недуги опасны для ваших соседей. Имеется ввиду, что они могут усугубить перепады давления, что может привести к срыву прибора. Думаем, не нужно пояснять в какую копеечку выльется вам эта поломка.
Как защитить полотенцесушитель от всех поломок?
Существуют универсальные метода того, как защитить полотенцесушитель от электрокоррозии и поломок. Сперва вам необходимо выбрать полотенцесушитель, который изготовлен из материалов высокого качества, при этом надежных и долговечных.
Наиболее популярным среди таких материалов является нержавеющая стальмарка AISI 304. Любое изделие с ее использованием прослужит своему хозяину не одно десятилетие. Однако существует нюанс – не обойдется без блуждающих токов, которые запускают процесс электрохимической коррозии и провоцируют образование точек коррозии, увеличивающиеся с ходом времени. При этом они являются причиной образования злосчастных подтеканий.
Как защитить полотенцесушитель от всех поломок
Почему образуются блуждающие токи?
Электрический ток образуется в водной среде за счет ее трения о металлические стенки труб либо же по причине заземления соседом неверно работающего электроприбора, к примеру, стиральной машины старого производства.
Данные факторы позволяют распространиться токам по трубам и перейти в воду, что и приводит внутренней ржавчине полотенцесушителя.
Повышенная жесткость воды также причина неблагоприятной среды для образования токов по причине соприкосновения металлов с различными потенциалами. Кроме того, даже пути трамваев, которые проходят недалеко от труб, могут являться причиной образования тока в воде.
Как исправить это явление?
Производители знают, как частично можно разрешить эту проблему. Выход в заземлении. Но оно так же должно быть грамотно выполнено: заземляется вставка из металла, которая расположена перед полотенцесушителем, но не в коем случае не заземляет корпус.
Как защитить полотенцесушитель от коррозии?
Купить полотенцесушитель рекомендуется тот, который качественно выполнен из материалов, относящихся к высококачественным. Вы также можете подобрать тот дизайн, что будет по душе исключительно вам.
Не рекомендуется в целях экономии устанавливать полотенцесушитель самостоятельным образом – высок риск того, что вы навредите себе и домочадцам. Лучше доверьте монтаж специалистам и в обязательном порядке требуйте от них гарантию работы.
Способы защиты от блуждающих токов
Для предотвращения пагубного воздействия электрохимического потенциала применяются методы защиты, которые могут отличаться в зависимости от особенностей металлических конструкций. Рассмотрим в качестве примера способы защиты водопроводных труб, полотенцесушителей и газопроводов, начнем в порядке данной очередности.
Видео про различные защиты от блуждающих токов
Защита водопроводных труб
Для проложенных в земле металлоконструкций, в частности водопроводных труб, применяются две методики защиты: пассивная и активная. Подробно опишем каждую из них.
Пассивная защита
Данная методика предусматривает нанесение на поверхность металлоконструкций специального изолирующего слоя, образующего защитный барьер между землей и металлической оболочкой. В качестве изоляционного материала используются полимеры, различные виды эпоксидных смол, битумное покрытие и т.д.
Пример защитного покрытия трубы для подземной укладки
К сожалению, современная технология не позволяет создать защитный барьер, обеспечивающий полную изоляцию. Любое покрытие обладает определенной диффузионной проницаемостью, поэтому при данном способе возможна только частичная изоляция от грунта. Помимо этого следует учитывать, что в процессе транспортировки и монтажа может быть нанесено повреждение защитному слою. В результате на нем образуются различные дефекты изоляции в виде микротрещин, царапин, вмятин и сквозных повреждений.
Поскольку рассмотренный метод не обладает достаточной эффективностью, он применяется в качестве дополнения активной защиты, о которой пойдет речь далее.
Активная защита
Под данным термином подразумевается управление механизмами электрохимических процессов, которые протекают в местах контакта металлических конструкций с образующимся в грунте электролитом. Для этой цели применяется катодная поляризация, при которой отрицательный потенциал смещает естественный.
Реализовать такую защиту можно гальваническим методом или используя источник постоянного тока. В первом случае применяется эффект гальванической пары, в которой анод, подвергается разрушению (жертвенный анод), защищая при этом металлоконструкцию, у которой потенциал несколько ниже (см. 1 на рис.5). Описанный способ эффективен для грунтов с низким сопротивлением (не более 50,0 Ом*м), при более низком уровне проводимости данный метод не применяется.
Применение источника постоянного тока в катодной защите позволяет не зависеть от сопротивления грунта. Как правило, источник изготовлен на базе преобразователя, запитанного от электрической цепи переменного тока. Конструктивное исполнение источника позволяет задать уровень защитных токов в соответствии со сложившимися условиями.
Рисунок 5. Варианты реализации катодной защиты
Обозначения:
- Применение жертвенного анода.
- Метод поляризации.
- Проложенная в земле металлоконструкция.
- Закладка в грунте жертвенного анода.
- Источник постоянного тока.
- Подключение к источнику малорастворимого анода.
Защита полотенцесушителей
Полотенцесушителям и другим оконечным металлическим устройствам на водопроводных трубах (смесителям) коррозия, вызванная блуждающими токами, не угрожала до тех пор, пока в быту не стали широко применяться пластиковые трубы. Даже, если в Вашем стояке установлены металлические трубы, не факт, что у соседа снизу они не пластиковые, да и для отводов в ванную и кухню наверняка используется пластик.
Чтобы обеспечить защиту от аварийных утечек тока и не допустить электрокоррозии, необходимо выровнять потенциалы, заземлив полотенцесушитель, водопроводные трубы в стояке, а также батарею отопления.
Защита газопроводов
Защита подземных газопроводов от блуждающих токов, которые вызывают коррозию, осуществляется точно так же, как и для водопроводных труб. То есть применяется один из двух вариантов активной катодной защиты, принцип работы которой рассматривался выше.
Определение коррозионной опасности для подземных сооружений
Для определения коррозионной опасности для подземных сооружений проводятся следующие геофизические работы:
- определение сопротивления грунта;
- определение наличия блуждающих токов в земле;
- определение наличия блуждающих токов в подземных сооружениях;
Определение сопротивления грунта необходимо при различных инженерных работах, в том числе при прокладке трубопроводов и газопроводов, стальных подземных резервуаров и сооружений, силовых кабелей и кабелей связи в металлической оболочке для оценки коррозионной активности грунта.
Методика работ реализуется согласно ГОСТ 9.602-89 и ГОСТ 9.602-2005. Работы проводятся методом электрического профилирования установкой Венера, с расстоянием между электродами (а), равным глубине (для кабелей связи – двойной глубине) прокладки подземного сооружения. Электроды размещают на поверхности земли на одной линии с осью трассы для проектируемого сооружения, а для сооружения уже уложенного в землю, – на линии, проходящей перпендикулярно или параллельно, на расстоянии в пределах от 2 до 4 м от оси сооружения (рис.1.). Расстояние между точками наблюдения составляет 100 – 200 м.
Рис. 1. Установка Венера для определения кажущегося удельного сопротивления грунта
По результатам работ рассчитывается кажущееся сопротивление, которое по своим значениям близко к удельному электрическому сопротивлению (УЭС) грунта. , где k=2pa – коэффициент установки Венера, dU – разность потенциалов на приемных электродах, I – ток в питающей линии. После расчетов согласно таблице 1 определяют коррозионную активность грунта.
Таблица 1. Коррозионная агрессивность грунта по отношению к углеродистой и низколегированной стали
УЭС грунта, Ом*м
Средняя плотность катодного тока, А/м^2
Определение наличия блуждающих токов в земле. Блуждающие токи опасны, прежде всего, своей электрохимической активностью, которая приводит к ускоренной коррозии подземных металлических сооружений, в том числе трубопроводов и газопроводов.
Определение наличия блуждающих токов производится в полевых условиях методом естественного поля. Методика работ реализуется согласно ГОСТ 9.602-89 и ГОСТ 9.602-2005. В работе используются неполяризующиеся электроды, представляющие собой пористый керамический сосуд, в который заливается насыщенный раствор медного купороса, а в раствор погружается стрежень (рис.2.). Контакт в таком электроде осуществляется фильтрации раствора медного купороса в землю, через пористую поверхность электрода.
Рис.2. Неполяризующийся электрод. 1 – пористая часть электрода, 2 – глазированная часть электрода, 3 – медный стержень, 4 – пробка, 5 – клемма, 6 – насыщенный раствор медного купороса (CuSO4).
Для проектируемого сооружения разность потенциалов на трассе проектируемого сооружения измеряют между двумя точками земли через каждые 1000 м по двум взаимно перпендикулярным направлениям (рис.3.) при разносе измерительных электродов – 100 м. Значение разности потенциалов в каждой точки регистрируют через каждые 10 секунд в течение 10 минут.
Обозначение понятия
Блуждающие токи – это заряженные электрочастицы с конкретной траекторией движения, появляющиеся в земля, являющейся проводником. Термин блуждающие появился в виду того, что невозможно предугадать локализацию частиц и начало появления процесса. Воздействие блуждающих электрочастиц очень плохо проявляется на железных изделиях, присутствующих над землёй и под ней.
Такие же процессы появляются из-за растущего количества электрифицированных объектов, являющихся основой современных стран. А так как почва проводник для электричества, выполняется взаимное действие между элементами.
Появляются блуждающие частицы сродни электрическим, для взаимного действия которых требуется сравнение разности потенциалов в 2-х произвольных точках, исключительно для блуждающего варианта проводник – это земля. В результате находящийся железный материал вблизи процесса рушиться быстрее из-за коррозии.
Что такое блуждающие токи?
Блуждающими токами называют токи, возникающие в земле, которая используется в качестве токопроводящей среды. Но это слишком общее определение. В вопросе полотенцесушителей блуждающие токи появляются в результате утечки электричества из проводки в результате пробоя провода. Ушедший ток стремится к местам с пониженным потенциалом, то есть к любым металлическим конструкциям.
Блуждающие токи опасны тем, что вызывают коррозию металла, что приводит к протечкам и изнашиванию полотенцесушителя. Другим опасным фактором является то, что прибор с блуждающими токами небезопасен для человека. Потому что велика возможность получения удара током.
Чтобы обезопасить себя от двух этих факторов необходимо сделать следующее:
- Заземление, то есть обеспечить крепкую связь между трубами водопровода или отопления с полотенцесушителем. Тогда блуждающие токи исчезнут и процесс коррозии остановится.
- Создать системы, которая уравновесит потенциалы всех труб.
Заземление может обезопасить от коррозии полотенцесушителя Блуждающие токи явление нередкое, кроме того опасное для человека. Поэтому, как только вы заметите эту особенность у своего полотенцесушителя, необходимо ее исправить: вызвав мастера или самостоятельно
Электрохимическая коррозия в доме
Эффекты электрохимической коррозии в быту чаще всего проявляются в системах обогрева. Свою роль тут играет то, что теплоносителем в таких системах служит горячая вода, проводимость которой быстро увеличивается по мере роста температуры. Блуждающие токи в полотенцесушителе приводят к накапливанию заряда на его поверхности. При интенсивной прокачке воды разность потенциалов и ток стекания достигают больших величин, что сопровождается интенсивным ржавлением.
Аналогичные процессы происходят в радиаторах водяного отопления при неправильно спроектированном или дефектном заземлении. Однако, за счет нахождения полотенцесушителя на виду и его постоянного контакта с влажной тканью его ржавление начинается быстрее и, кроме того, сразу же бросается в глаза.
Оборудовать санузлы квартир и индивидуальных домов станцией катодной защиты нецелесообразно. Поэтому основным средством защиты от коррозии блуждающими токами в данной ситуации становится реализованное по всем правилам выравнивание потенциалов между металлическими поверхностями и их заземление. При выполнении такого заземления заземляющий провод по возможности целесообразно подключать непосредственно на шину электрического щитка.
В жилом секторе большую популярность начинает приобретать разводка пластиковыми трубами. В этой ситуации можно не производить заземление и ограничиться выравниванием потенциалов. Для реализации этой процедуры используется соединение со стояком отдельных элементов водопроводной и отопительной арматуры (полотенцесушитель, смеситель и т.д.). Для такого подключения применяется обычный заземляющий провод.
Как измерить величину блуждающего тока
Наличие потенциальной опасности в обязательном порядке проверяют при проектировании новых трубопроводов в зоне их предполагаемой укладки. Для этого используют мультиметры высокого класса точности, внутренне сопротивление которых должно быть не менее 1 МОм, и специальные электроды, с минимальной паспортной разницей потенциалов.
Также читайте: Какое влияние трансформаторная будка может оказывать на человека
Измерения проводят по следующей схеме:
- Вдоль всей будущей трассы, устанавливая электроды через 1000 м.
- По двум перпендикулярным направлением, с установкой электрода на расстоянии 100 м от точки пересечения линий.
Основная задача — определить существующую разницу потенциалов между точками. Если этот показатель превышает 0,04 В, на участке действуют блуждающие токи.
В районе расположения действующих рельсовых путей электротранспортной системы контроль выполняют за счёт следующих замеров:
- Сопротивления изоляции между рельсами и грунтом.
- Разницы потенциалов между рельсовым полотном и расположенными в земле металлическими конструкциями.
- Плотности утечек через оболочки кабельных проводников.
Весь комплекс измерений выполняют при помощи специального оборудования.
Более подробно про измерения можете прочитать в инструкции(откроется в новой вкладке):Читать инструкцию
Разность потенциалов: причины возникновения
Но откуда берется разность потенциалов, если дом построен с учетом всех действующих норм? В теории при соблюдении строительных правил разности потенциалов быть не должно. Но на практике часто бывает так, что при сборке конструкций и инженерных систем сварные соединения заменяют сгонами. Еще один распространенный вариант – интеграция в схему дополнительных сопротивлений или металлических деталей. И то, и другое может стать причиной возникновения разности потенциалов на противоположных концах трубы и, соответственно, инициировать коррозию металла.
Не стоит забывать и о «конфликте» между металлом и пластиком, который тоже играет важную роль в разрушении различных периферических устройств (к ним относятся и полотенцесушители). Из-за того, что между сантехническим оборудованием из нержавеющей стали и металлическим стояком часто ставятся пластиковые трубы (их используют для выполнения разводки по квартире), связь между этими частями системы разрывается. И хотя стояк в любом случае будет заземлен (в новых многоэтажках это делается посредством системы уравнивания, а в домах старого фонда – через расположенный в подвале здания контур заземления), разность потенциалов все равно образуется. А при движении по трубам воды, которая демонстрирует отличную токопроводность, возникает еще и микротрение, гарантированно ведущее к появлению блуждающих токов. А они, в свою очередь, провоцируют коррозию. Круг замкнулся!
Взаимосвязь токов и коррозийных процессов
Коррозия блуждающих токов Любой водопровод, находящийся в почве, повреждается коррозией за счет воздействия на него влаги и солей, однако если сюда еще подключить и активность токов, то возникает электролитический процесс. При этом на скорость электрохимической реакции воздействует заряд, протекающий между анодом и катодом. Отсюда следует, что на активность повреждения изделий из металла будет влиять сопротивление почвы движению зарядов, а также сложность течений, находящихся в анодной и катодной зоне.
В такой обстановке система водоснабжения подвержена обычной коррозии под влиянием токов утечки. Воздействие формирует гальваническую пару, ускоряющую развитие коррозии. В истории существует немало моментов, когда укладываемый трубопровод должен был служить 20 лет, а на самом деле разрушение происходило через 2 года.
Что такое блуждающий ток?
Как известно, земля является проводником электрического тока, что позволяет применять это свойство для создания заземляющих устройств. Но в тоже время, когда почва выступает в качестве токопроводящей среды, в ней образуются утечки. Поскольку нельзя спрогнозировать в какое время начнется процесс, и где он будет протекать, то такие проявления получили термин «блуждающие».
Как мы помним из школьного курса физики, для образования электрического тока необходимо, чтобы возникла разность потенциалов между двумя участками цепи. Принцип возникновения блуждающих токов – аналогичный. Только роль проводника в данном случае исполняет земля.
На территории современных городов и населенных пунктов находится множество электрифицированных объектов, начиная от ЛЭП и заканчивая рельсовым транспортом, включая оборудование тяговых подстанций. Их объединяет один фактор – расположение на земле. Это приводит к довольно специфичному взаимодействию с последней, проявляющемуся в виде появления блуждающих токов. Ниже представлена таблица, которой приводятся их потенциальные источники и условия образования электросвязи связи с почвой.
Таблица 1. Потенциальные источники.
Название объекта | Взаимосвязь с землей |
Различные виды распределительных устройств, оборудование подстанций, ВЛ с нулевым проводником (глухозаземленная нейтраль), подключенным к повторным заземлителям. | При наличии на объекте ЗУ. |
ВЛ сетей с изолированной нейтралью, кабельные магистрали. | Возникает при повреждении изоляционного покрытия токонесущих элементов кабелей. |
Рельсовый электротранспорт, системы с заземленной нейтралью. | Наличие технологической связи между одним из проводников и землей. |
Разрушение металла в зависимости от почвы. Подземная коррозия трубопроводов
Металлические изделия служат нам не только в атмосферных условиях, но часто находятся в земле. Трубопроводы, по которым текут вода, газ, нефть, очень часто делают из металла и прокладывают под землей. Под землей также размещают кабели, по которым подают электрический ток или осуществляют телеграфно-телефонную связь. Почва, как вам известно, представляет собой смесь различных веществ. В ее состав входят минералы и различные органические вещества, являющиеся продуктами гниения. Почвенная вода всегда содержит растворы солей и кислот, т. е. она электролит. Вот почему так тщательно покрывают изоляционными материалами металлические трубы, прежде чем они будут зарыты в почву. Правда, по своим свойствам почва может быть различна. При раскопке трубопроводов в окрестностях Батуми, проложенных в 1878 г., т. е. труб, которые пролежали в почве около ста лет, выяснилась интересная картина. На отдельных участках не осталось и следа от металлических труб, так как они полностью были разрушены. В то же время в тех местах, где трубы проходили по глинистой почве, они полностью сохранились. Вид их был такой, как будто бы они только что были зарыты в землю. Следовательно, в глинистой почве не было доступа к металлу электролитов и кислорода, способствующих разрушению металла. Трубы здесь были изолированы самой почвой. Вот такую же роль играет покрытие труб различного рода смолами. Однако в больших городах такого рода покрытия не всегда сохраняют металл от разрушения. Коварную роль здесь играет электрический ток.
Это интересно: Низкое напряжение в сети – что делать и куда жаловаться
Процесс формирования
Основой для появления блуждающих токов служит бесчисленное множество оборудования, работающего от электрического заряда, в результате возможными источниками являются такие элементы:
- наличие ЗУ в подобных объектах как подстанции, ВЛ с нулевым проводником, распределители;
- появление активности, в конечном итоге разрушения слоя изоляции проводов, несущих ток в кабелях и ВЛ сетях, где нейтраль изолирована;
- присутствие связующего инновационного звена между проводником и почвой в конструкциях с заземленной нейтралью и рельсовых транспортах, движимых током.
Механизм появления спонтанных разрядов можно рассмотреть на примере одного из приведенных пунктов.
Один конец нулевого провода объединен с ЗУ электрические станции, а другой присоединен к шине PEN потребляющего энергию, обладающей присоединением к ЗУ. Отсюда следует, что разница потенциалов электрического значения между выводами сформировывает блуждающие токи, так как энергия станет передаваться на ЗУ, что со своей стороны сформирует цепь.
В этом случае объем потерь не имеет высокого процента, так как пройдёт по пути самого малого сопротивления, однако конкретная часть попадет в землю.
Точно также происходит утечка энергии и в случае с повреждением изоляции проводки.
При этом неизменная бесперебойная утечка не имеет места, так как о ее появлении сигнализирует система и происходит автоматическая локализация участка, а еще согласно нормативам, есть конкретный временной период, отведенный на удаление поломок.
Важно! Cогласно статистике, центральные места формирования утечки электрической энергии и образования блуждающих токов приходятся на городские и пригородные зоны, где есть наземный транспорт, зависящий от энергосети. Токи на рельсах
Токи на рельсах
При эксплуатации городского электрифицированного транспорта, подается напряжение из подстанции в тяговую систему, переходящее на рельсы и совершающее обратный цикл. Если рельсы как металлическая база относительно проводника не устойчивы, это ведет к появлению в почве размещений блуждающих токов, тогда каждая металлическая конструкция, появившаяся на их пути, к примеру, изделия сантехнические, выступают в качестве проводника.
Важно! Происходит такое взаимное действие в виду того, что ток двигаясь, подбирает путь наименьшего сопротивления, которое у металла меньше, чем у земли. Все это приводит к ускоренному разрушению изделий из металлов
Все это приводит к ускоренному разрушению изделий из металлов.
Блуждающие токи
Блуждающими называют токи, появляющиеся в грунте при его использовании в качестве проводящей среды. Причины появления таких токов в отопительной системе и водопроводах разнообразны:
- неправильно созданное или отсутствующее заземление электроустановок, имеющих связь с сушилкой;
- близкое расположение токоведущих магистралей (к примеру, железной дороги, трамвайных путей);
- короткие замыкания.
Теоретически короткие замыкания не должны возникать при правильно построенной системе. Однако бывает, что вместо сварки используют обычные сгоны или вместо металлической трубы ставят металлопластиковую. В результате этого и возникают блуждающие токи, ведущие к коррозийным процессам электрического или электрохимического типа.
Блуждающие токи возникают, если стояк выполнен из металла и заземлен, а в квартирах установлены пластиковые трубы. В зданиях новой постройки заземление осуществляется через систему уравнивания потенциалов, а в старых домах — по заземлительному контуру. Если трубы пластиковые, металлосвязь между ними и сушилкой теряется, что приводит к возникновению блуждающих токов: имеющийся потенциал разрывается. Из-за этого на стояке один потенциал, а на “полотенчике” — совсем другой.
Другая частая причина появления блуждающих токов — разные потенциалы двух разных металлов, находящихся в плотном контакте. Особенно активно токи возникают, когда соседствуют обычная сталь и нержавейка.
Наиболее распространенные причины утечки тока на полотенцесушитель:
- Неправильное использование системы электроснабжения, когда трубы задействуются в качестве рабочих нулей.
- Непрофессиональное подключение гидромассажных ванн, душевых кабин, стиральных и посудомоечных машин, стерилизаторов. В таких случаях трубы связаны с электропитанием здания.
- Нарушение целостности кабельных сетей, электроустановок.
- Ослабление, отгорание, физическое повреждение проводки.