Что такое Кельвины в освещении и как они измеряются

Цветовая температура светодиодов

В светодиоде свет излучает специальное люминофорное покрытие. Традиционно все светодиодные источники освещения делят на три группы по спектру:

  • Теплый белый (до 3500К);
  • нейтральный белый (3500К – 5200К);
  • холодный белый (выше 5200К).

Условно мы имеем следующую таблицу цветовой температуры светодиодных ламп:

Что такое цветовая температура светодиодных ламп

С точки зрения физики световая температура это спектр, излучаемый нагретым телом относительно абсолютно чёрного тела. Что значит цветовая температура лампы? Это цвет свечения тела, раскалённого до соответствующей температуры.

Соответственно, цвет светодиодных ламп имеет три градации – жёлтый (до 3200К), белый (4000-5500К) и бело-голубой (выше 5500К). Чем выше температура, тем короче длинна волны излучаемого светового луча.

Существуют источники с цветом выше 9000К, но для освещения их использовать невозможно. Мы видим предметы благодаря тому, что от их поверхности отражается свет. При повышении цветовой температуры длина волны уменьшается, чем она меньше тем «хуже» свет отражается от окружающих объектов.

Если в мощный фонарь поставить светодиод на 18000К, то сторонний наблюдатель сможет заметить его за несколько километров, а вот под ногами он создаст пятно лишь в десятки сантиметров.

Индекс цветопередачи и цветовая температура

Индекс цветопередачи характеризует возможность воспринимать градации цвета. Когда температура света светодиодных ламп ниже 3200К цветовое восприятие существенно уменьшается. Попробуйте при свете свечи вытащить из коробки цветных карандашей зелёный или коричневый цвет. Поверьте, задача окажется не из лёгких.

Индекс цветопередачи очень чётко регламентируется для автомобильных светодиодных ламп, ведь при плохой цветопередаче может возникнуть ситуация, когда водитель не сможет различить полотно дороги и обочину.

Цветовая температура и качество освещения

Казалось бы для чего нужны светодиоды теплого и холодного цветов, если они не способны обеспечить нормальные условия восприятия.

Одной из основных областей применения светодиодов с низкой цветовой температурой (2400К-3000К) — освещение в «зашумленной» оптической среде. Проще говоря, освещение в условиях плохой видимости.

Возьмём автомобильную фору. При сильном тумане белый свет из-за малой длины волны отражается от водяной пыли, что существенно ограничивает дальность видимости. У желтого света длинна волны в несколько раз больше, она не отражается от мелких предметов, а огибает их. Поэтому противотуманные фары в автомобилях делают жёлтого цвета.

В то же время короткие волны распространяются без затухания дальше. В качестве аналогии рассмотрим радиоволны и жесткое коротковолновое рентгеновское излучение. Радиоволну блокирует даже тонкий лист металла, а для защиты от рентгена используют толстый свинец. Холодный белый свет используют в системах дальнего оповещения, прожекторах, сигнальных и поисковых фонарях.

Как выбрать цветовую температуру?

Цветовая температура является одной из основных характеристик светодиодных изделий, использующихся для освещения. Часто возникает вопрос, что же это такое и как выбрать подходящую цветовую температуру? Попробуем разобраться с этими вопросами.

По определению, цветовая температура — это температура абсолютно чёрного тела, при которой оно испускает излучение того же цветового тона, что и рассматриваемое излучение, измеряется в градусах Кельвина.

Другими словами, цветовая температура определяет «оттенок» света, излучаемого источником (лампой или светильником), от теплого, близкого к лампе накаливания, отдающего «желтизной» до холодного белого света (люминесцентные лампы холодного света), отдающего в синюю область спектра.

Шкала цветовых температур распространенных источников света:

800 К — начало видимого темно-красного свечения раскалённых тел; 1500-2000 К — свет пламени свечи; 2000 К — Натриевая лампа высокого давления; 2200 К — лампа накаливания 40 Вт; 2680 К — лампа накаливания 60 Вт; 2800 К — лампа накаливания 100 Вт (вакуумная лампа); 2800-2854 К — газонаполненные лампы накаливания с вольфрамовой спиралью; 3000 К — лампа накаливания 200 Вт, галогенная лампа; 3200—3250 К — типичные киносъёмочные лампы; 3400 К — солнце у горизонта; 3800 К — лампы, использующиеся для подсветки мясных продуктов в магазине (имеют повышенное содержание красного цвета в спектре); 4200 К — лампа дневного света (тёплый белый свет); 4300-4500 К — утреннее солнце и солнце в обеденное время; 4500-5000 К — ксеноновая дуговая лампа, электрическая дуга; 5000 К — солнце в полдень; 5500 К — облака в полдень; 5500-5600 К — фотовспышка; 5600-7000 К — лампа дневного света; 6200 К — близкий к дневному свет; 6500 К — стандартный источник дневного белого света, близкий к полуденному солнечному свету; 6500-7500 К — облачность; 7500 К — дневной свет, с большой долей рассеянного от чистого голубого неба; 7500-8500 К — сумерки; 9500 К — синее безоблачное небо на северной стороне перед восходом Солнца; 10000 К — источник света с «бесконечной температурой», используемый в риф-аквариумах (актиниевый оттенок голубого цвета); 15000 К — ясное голубое небо в зимнюю пору; 20000 К — синее небо в полярных широтах.

Градации цветовой температуры.

Примерное разделение градаций цветовой температуры:

  • Теплый белый (2700-3200К)
  • Дневной белый (3500-4500К)
  • Белый (5000-6000К)
  • Холодный белый (6000-8000К).

Лучше выбирать именно нужное значение цветовой температуры в Кельвинах, т.к. у разных производителей понятия «теплый», «нейтральный», «холодный» могут различаться.

Если Вы дочитали статью до этого абзаца, значит пришло время сделать Вам приятный презент: промокод на скидку 10% !

Введите кодовое слово » Bpearl » в корзине при оформлении заказа и получите:

выгоду — 10% , доставку по СПб — бесплатно , и самый короткий срок исполнения заказа !

В таблице 1 диапазоны значений цветовых температур наиболее распространенных искусственных источников света. Причем, точное значение цветовой температуры у истоников света всегда указан на упаковке или в сопроводительной документации на товар(паспорт на изделие, техническое описание).

Таблица 1. Цветовые температуры наиболее распространенных источников света

Ссылки [ править ]

  1. ^ “BIPM – SI Brochure” . bipm.org . Дата обращения 1 августа 2019 .
  2. ^ “Mise en pratique” . BIPM .
  3. Лорд Кельвин, Уильям (октябрь 1848 г.). «На абсолютной термометрической шкале» . Философский журнал . Архивировано из оригинала 1 февраля 2008 года . Проверено 6 февраля 2008 года .
  4. ^ «Решение 3: Определение термодинамической шкалы температур» . Постановления 10-го ГКБП . Bureau International des Poids et Mesures. 1954. Архивировано из оригинала 23 июня 2007 года . Проверено 6 февраля 2008 года .
  5. ^ «Разрешение 3: единица измерения термодинамической температуры в системе СИ (кельвин)» . Постановления 13-го ГКБП . Bureau International des Poids et Mesures. 1967. Архивировано из оригинала 21 апреля 2007 года . Проверено 6 февраля 2008 года .
  6. ^ «Резолюция 4: Определение единицы измерения термодинамической температуры (кельвин) в системе СИ» . Постановления 13-го ГКБП . Bureau International des Poids et Mesures. 1967. Архивировано 15 июня 2007 года . Проверено 6 февраля 2008 года .
  7. ^ «Единица термодинамической температуры (кельвин)» . Брошюра СИ, 8-е издание . Bureau International des Poids et Mesures. 1967. С. Раздел 2.1.1.5. Архивировано из оригинального 26 сентября 2007 года . Проверено 6 февраля 2008 года .
  8. ^ Проект Резолюции A «О пересмотре Международной системы единиц (СИ)» для представления в CGPM на его 26-м заседании (2018 г.)
  9. ^ «Правила и соглашения о стилях для выражения значений количеств» . Брошюра СИ, 8-е издание . Bureau International des Poids et Mesures. 1967. С. Раздел 2.1.1.5. Архивировано 16 июля 2012 года . Проверено 27 августа 2012 года .
  10. ^ “Правила единиц СИ и стилистические соглашения” . Национальный институт стандартов и технологий. Сентябрь 2004. Архивировано 5 февраля 2008 года . Проверено 6 февраля 2008 года .
  11. ^ «Правила и соглашения о стилях для выражения значений количеств» . Брошюра СИ, 8-е издание . Bureau International des Poids et Mesures. 1967. С. Раздел 5.3.3. Архивировано 23 сентября 2015 года . Дата обращения 13 декабря 2015 .
  12. ^ “Кельвин | Руководство ЦЕРН по написанию” . Writing-guidelines.web.cern.ch . Архивировано из оригинала 17 апреля 2020 года . Дата обращения 19 сентября 2019 .
  13. ^ Барри Н. Тейлор (2008). «Руководство по использованию Международной системы единиц (СИ)» . Специальная публикация 811. Национальный институт стандартов и технологий. Архивировано 3 июня 2016 года . Проверено 5 марта 2011 года .
  14. ^ Б Ян Миллс (29 сентября 2010). «Проект главы 2 брошюры СИ после переопределения базовых единиц» . CCU. Архивировано 10 января 2011 года . Проверено 1 января 2011 года .
  15. ^ «Генеральная конференция мер и весов одобряет возможные изменения в Международной системе единиц измерения, включая новое определение килограмма» (пресс-релиз). Севр, Франция: Генеральная конференция по мерам и весам . 23 октября 2011 года архивации с оригинала на 9 февраля 2012 года . Проверено 25 октября 2011 года .
  16. Wood, B. (3–4 ноября 2014 г.). «Отчет о заседании рабочей группы CODATA по фундаментальным константам» . BIPM . п. 7. Архивировано из оригинала 13 октября 2015 года. Милтон ответил на вопрос о том, что произойдет, если … CIPM или CGPM проголосуют за то, чтобы не продвигать вперед новое определение SI. Он ответил, что считает, что к тому времени решение двигаться вперед следует рассматривать как предрешенный.
  17. ^ a b Ньюэлл, DB; Cabiati, F; Фишер, Дж; Fujii, K; Каршенбойм С.Г .; Марголис, HS; де Мирандес, Э; Mohr, PJ; Nez, F; Пачуки, К; Куинн, Т.Дж.; Тейлор, Б.Н.; Ван, М; Дерево, БМ; Zhang, Z; и другие. (Целевая группа Комитета по данным для науки и технологий (CODATA) по фундаментальным константам) (29 января 2018 г.). «Значения h , e , k и N A в CODATA 2017 для пересмотра SI» . Метрология . 55 (1): L13 – L16. Bibcode2018Metro..55L..13N . DOI10.1088 / 1681-7575 / aa950a .
  18. ^ «Обновление определения кельвина» . Международное бюро мер и весов ( BIPM ). Архивировано 23 ноября 2008 года . Проверено 23 февраля 2010 года .
  19. ^ “22.2”. Стандарт Unicode, версия 8.0 . Маунтин-Вью, Калифорния, США: Консорциум Unicode. Август 2015 г. ISBN.  978-1-936213-10-8. Архивировано из оригинала 6 декабря 2016 года . Проверено 6 сентября 2015 года .

Произошедшее переопределение

Недостатком старого определения кельвина являлось то, что при практической реализации величина кельвина оказывалась зависящей от чистоты и изотопного состава используемой воды. Исходя из стремления устранить этот недостаток, XXIV ГКМВ, состоявшаяся 17—21 октября 2011 года, приняла резолюцию, в которой, в частности, было предложено в будущей ревизии Международной системы единиц переопределить кельвин, связав его величину со значением постоянной Больцмана. При этом предполагалось, что значение постоянной Больцмана будет зафиксировано, то есть будет считаться определённым точно. В связи с этим в резолюции XXIV ГКМВ по поводу кельвина сформулировано:

Таким образом, стало выполняться точное равенство k=1,380 6X⋅10−23 Дж/К. Следствием этого явилось то, что кельвин стал равным изменению температуры, которое приводит к изменению энергии, приходящейся на одну степень свободы на k⁄2, то есть на ½⋅1,380 6X⋅10−23 Дж.

В своей резолюции XXIV ГКМВ отметила также, что непосредственно после переопределения кельвина температура тройной точки воды останется равной 273,16 К, но при этом её значение приобретёт погрешность и в дальнейшем будет определяться экспериментально.

XXV ГКМВ, состоявшаяся в 2014 году, приняла решение продолжить работу по подготовке новой ревизии СИ, включающей переопределение кельвина, и наметила закончить эту работу к 2018 году с тем, чтобы заменить существующую редакцию Международной системы единиц (СИ) обновлённым вариантом на XXVI ГКМВ в том же году.

Понятие цветовой температуры

Цветовая температура – важнейшая характеристика светодиодных электроосветительных изделий. Именно от нее зависит то, насколько комфортно вы будете ощущать себя в интерьере, освещаемом светодиодными лампами, лентами или светильниками.

Светодиодными лампами оснащаются новые авто, освещаются дома, помещения предприятий и стенды наружной рекламы. Они применяются в прожекторах, уличных и офисных светильниках, а также во множестве других изобретений человека.

Понятие цветовая температура светодиодных ламп даже не подразумевает количество отдаваемого ими тепла, а имеет совершенно другое значение. Это – визуальный эффект восприятия источника освещения человеческим глазом. По мере приближения цветового спектра света к солнечному (желтому) определяют «теплоту» каждой лампы.

Можно также привести ассоциацию с пламенем свечи, и вы тут же поймете, как это явление описывается. Напротив, голубоватый оттенок света ассоциируется с пасмурным небом, снежным ночным сиянием. Этот свет вызывает у нас холодные, бледные образы. Но всему есть определенное научное объяснение.

При нагреве куска металла у него появляется характерное свечение. Сначала диапазон цвета находится в красных тонах. При повышении температуры цветовой спектр постепенно начинает смещаться к желтому, белому, ярко синему и фиолетовому.

Условно мы имеем следующую таблицу цветовой температуры светодиодных ламп:

Спектр цвета свечения светодиодных кристаллов несколько иной. Он отличен от возможных цветов свечения металла благодаря другой методике своего происхождения. Но общая суть остается той же: для получения выбранного оттенка потребуется определенная цветовая температура.

Стоит отметить, что этот показатель никак не связан с количеством тепла, выделяемым осветительным прибором.

Цветовая температура измеряется в градусах по шкале Кельвина (К).

  • По европейским нормам все источники света по цветности разделены на три группы:
  • теплый белый (Тц = ниже 3500 K)
  • нейтральный белый или дневной (Тц = 3500-5300 K)
  • холодный белый (Тц = выше 5300 K)

Цветовая температура привычной лампы накаливания – примерно 2800 К, поэтому тепло-белый свет свечения светодиодных ламп наиболее привычен глазу (от 2700 до 3500 К).

Для большинства видов работ и помещений рекомендуются «нейтральные» источники света (Тцв = 4000-4500 К). Если говорить о влиянии цветовой температуры на человека, то теплый свет расслабляет и создает атмосферу уюта, а более холодные тона помогают организму концентрироваться и настраивают на рабочий лад.

Еще раз хочу отметить, не стоит путать цветовую температуру и физическую температуру (количества тепла) которую выделяет ваша лампа – это разные показатели.

Комбинируя источники освещения с разной температурой в пределах одного помещения, можно изменять цветовое восприятие предметов в интерьере

Но не увлекайтесь! Важно следить за гармоничностью цветов, так как в противном случае может получиться «цветовая дискотека», которая будет раздражать глаза. Да и неудачное решение покажет вкус хозяина квартиры не с лучшей стороны

  1. Красный цвет можно смягчить за счет тёплого оранжевого оттенка света (2500-3000 К).
  2. Оранжевый цвет (интенсивный) превращается в нежный и пастельный с помощью тёплого желтоватого оттенка (3000-4000 К).
  3. Жёлтый цвет станет серым и невыразительным, если использовать лампы с голубоватым оттенком (5000-6500 К).
  4. Зелёный цвет можно смягчить до салатового посредством тёплого оранжевого света или придать оттенок морской волны, использовав яркий голубоватый свет.
  5. Синий цвет наиболее адекватно смогут передать источники света нейтрального белого оттенка.
  6. Фиолетовый цвет при желтоватом оттенке освещения превратится в красный, поэтому его освещают с высокими показателями цветовой температуры.

Цветовая температура и восприятие человека

Спектр освещения напрямую влияет на настроение и настрой человека. Наш организм генетически настроен на сменяющиеся циклы. Поэтому каждый диапазон вызывает определенную ответную реакцию.

Нейтральный белый поток воспринимается как полдень и настраивает на активную работу, помогает сконцентрироваться. Поэтому он используется в помещениях, где люди работают либо учатся целый день.

Холодный синий поток вызывает чувство тревоги и при кратком воздействии позволяет быстро настроиться на тяжелые физические и умственные нагрузки. При длительном действии вызывает апатию, заторможенность, стресс.

Советуем посмотреть видео:

Примечания

  1. ГОСТ 8.417-2002. Государственная система обеспечения единства измерений. Единицы величин. (неопр.) (недоступная ссылка) . Проверено 9 января 2013. Архивировано 10 ноября 2012 года.
  2. BIPM — kelvin (неопр.) . www.bipm.org. Проверено 1 марта 2017.
  3. Thomson, William (October 1848). “On an Absolute Thermometric Scale” . Philosophical Magazine . Проверено 2013-01-01 .

Самой известной температурной шкалой в большинстве стран мира с XVIII века служила шкала измерения градусного режима по Цельсию (о С). Другая температурная шкала, предложенная в XIX веке , внесла уточнения в шкалу по Цельсию и стала самой точной системой определения сверхнизких температур. Новая шкала выявила некую постоянную величину термодинамической точки воды, которую назвали «кельвин» (К).

Однако даже с дополнениями и уточнениями по Кельвину, в современном мире пользуются в основном системой определения градусов по Цельсию. Хотя, в США или на Ямайке, использовали в старые времена и придерживаются до сих пор показателей ещё одной шкалы определения температур, предложенной Фаренгейтом.

Система измерения температурного градуса по Цельсию взяла своё название по имени Андерса Цельсия, шведского физика, разработавшего в 1742 году шкалу измерения температур. Учёный предположил, что такие физические процессы, как закипание воды, или таяние льда, напрямую зависят от давления в окружающей атмосфере. Это затрудняло исследования по определению точных показаний.

Шкала по Цельсию имела диапазон от 0 до 100 градусов со знаком «+», который продолжается вниз или вверх до бесконечности. Это являлось проблемой для точного измерения величин, поскольку известно, что ниже +4 °C вода имеет свойство расширяться и при дальнейшем понижении температуры даёт неправильные показания градусных значений.

Пересмотрена и модернизирована шкала температур по Цельсию была лишь после одобрения научным миром разработок физика Уильяма Томсона (Кельвина). Именно тогда была представлена постоянная температурная величина и принято определение, что 1 градус Цельсия равен 274,15 Кельвинам.

Как выбрать цветовую температуру?

Цветовая температура является одной из основных характеристик светодиодных изделий, использующихся для освещения. Часто возникает вопрос, что же это такое и как выбрать подходящую цветовую температуру? Попробуем разобраться с этими вопросами.

По определению, цветовая температура — это температура абсолютно чёрного тела, при которой оно испускает излучение того же цветового тона, что и рассматриваемое излучение, измеряется в градусах Кельвина.

Другими словами, цветовая температура определяет «оттенок» света, излучаемого источником (лампой или светильником), от теплого, близкого к лампе накаливания, отдающего «желтизной» до холодного белого света (люминесцентные лампы холодного света), отдающего в синюю область спектра.

Внутренний холод

Температуры очень низкие удавалось получать в лабораториях, где физики пытались приблизиться к абсолютному нолю хотя бы на короткие промежутки времени. И они смогли подойти к нему очень близко — ближе, чем в открытом космосе.

В лабораториях используются в качестве охладителей многие жидкие газы, однако и они теплее абсолютного ноля. Можно охладить азот до жидкого состояния — этот газ переходит в него при 77 градусах Кельвина (-196 Цельсия). Жидкий азот легко транспортируется в особых емкостях и используется в больницах для хранения биологических образцов, в том числе для замораживания эмбрионов и спермы в клиниках для больных бесплодием; находит он применение и в современной электронике. Если капнуть жидким азотом на цветок гвоздики, он станет до того хрупким, что уроните его на пол — и он разобьется, точно фарфоровый.

Еще холоднее жидкий гелий — всего 4 градуса Кельвина, однако и эта температура изрядно выше абсолютного ноля. А вот при смешивании двух типов гелия — гелия-3 и гелия-4 — достигается температура в несколько тысячных градуса Кельвина.

Для достижения температур еще более низких физикам приходится использовать изощренные методы. В 1994-м ученые Американского национального института стандартов и технологии (NIST), находящегося в Боулдере, штат Колорадо, с помощью лазера охладили атомы цезия до 700 миллиардных градуса Кельвина. Девять лет спустя ученым Массачусетского технологического института удалось пойти дальше, достигнув 0,5 миллиардных градуса Кельвина.

На самом-то деле абсолютный ноль — идея абстрактная. Такую температуру никогда не удавалось получить в лаборатории или измерить в природе. Ученым, подбирающимся к ней все ближе, приходится мириться с тем, что достигнуть ее никогда не удастся. Но почему? Во-первых, любой термометр, сам не имеющий температуру абсолютного ноля, будет отдавать тепло и тем самым сорвет опыт. Во-вторых, измерять температуру при столь низких энергиях вообще затруднительно — начинают работать такие эффекты, как сверхпроводимость, вмешивается квантовая механика, а это воздействует на движение и состояние атомов. Так что мы просто не сможем узнать наверняка, что уже добрались до абсолютного ноля. Абсолютный ноль — это тот самый случай, когда «нет там никакого там».

Диапазон цветовых температур

Светодиодное оборудование отличается от ламп накаливания не только экономичностью, но и более широким диапазоном цветовой гаммы, которую может излучать луч. Лампочка дневного света и характеристика ее цветовой температуры являются главными при выборе ее на рынке для монтажа в своем доме.  Оттенок будет выбираться по шкале Кельвина. Выше уже была приведена такая шкала, поэтому давайте рассмотрим ее чуть глубже:

  1. 2700–3500 — оттенок лампы теплый белый.
  2. 3500–5000 — обычный нейтральный белый цвет.
  3. 5000–7000 — яркий белый цвет холодного оттенка.

Температура цвета определяется степенью нагреваемого металла, как показывает таблица. Поэтому можете представить, что если разогреть металл до высокой температуры, как раз получится ослепительно яркий белый цвет.

Свет любого диапазона, из тех трех, что мы рассмотрели, будет оказывать влияние на человеческий организм и самочувствие. Поэтому при разных целях освещения будет использоваться разный элемент.

Область применения светодиодных светильников распространяется на:

  • производственные и муниципальные учреждения;
  • лаборатории и станции;
  • торговые центры и магазины;
  • частные дома, дачи, квартиры.

Словом, везде, где только можно увидеть человека, применяются светодиодные светильники.

В производственных помещениях чаще всего используются светильники третьей категории, которые придают помещению яркий холодный оттенок. Это позволяет настроить всех сотрудников на рабочий лад, потому что яркий белый цвет делает нас активными и более внимательными. Поэтому в офисах можно встретить хорошее освещение от люминесцентных ламп.

Дома, в гостиной или кабинете следует использовать нейтральные тона для создания нормального уровня освещения. Если хочется придать комнате больше уюта и спокойствия, отличным решением станет установить светильники с цветовой температурой от 2700 К. В зависимости от степени цветовой температуры светодиодных ламп будет зависеть:

  • скорость реагирования человека;
  • его внимательность;
  • уровень концентрации;
  • настрой и душевное состояние.

Другими словами, если есть нужда организовать активность — следует придерживаться холодных и ярких тонов. Цветовая температура светодиодных ламп с теплыми тонами нужна для расслабления и релаксации.

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий