Вакуумный выключатель: устройство и принцип работы + нюансы выбора и подключения

Включение

В отключенном положении выключателя контакты вакуумной камеры (ВДК) удерживаются в разомкнутом состоянии действием отключающей пружины, которое передаётся на подвижный контакт ВДК посредством тягового изолятора. Для включения модуля на обмотку электромагнитного привода разряжается на предварительно заряженный включающий конденсатор блока управления. Импульс тока, протекающий по обмотке электромагнитного привода в результате разряда конденсатора, создаёт магнитное поле в зазоре между якорем и плоским магнитопроводом.
По мере роста тока в обмотке электромагнитного привода сила электромагнитного притяжения между якорем и плоским магнитопроводом возрастает до величины, превышающей силу удержания, создаваемую пружиной отключения. В этот момент якорь привода начинает двигаться по направлению к магнитопроводу, толкая тяговый изолятор и подвижный контакт ВДК.
В процессе движения якоря по направлению к магнитопроводу воздушный зазор уменьшается, благодаря чему сила притяжения якоря увеличивается. Быстро растущая электромагнитная сила стремительно ускоряет движущиеся части модуля до скорости примерно 1 м/с. Такая скорость является оптимальной для процесса включения и позволяет избежать дребезга контактов при их соударении, существенно снижая при этом вероятность пробоя вакуумного промежутка до момента замыкания контактов.
Ускоряющий якорь генерирует в витках обмотки электромагнитного привода противо ЭДС, которая препятствует дальнейшему нарастанию тока в обмотке и даже несколько снижает его.
В момент замыкания контактов подвижный контакт останавливается, а якорь продолжает своё движение ещё на 2 миллиметра, поджимая контакты через пружину дополнительного поджатия контактов.
Достигнув плоского магнитопровода, якорь останавливается, примагнитившись к магнитопроводу привода. В момент остановки якоря он перестаёт индуцировать противо-ЭДС, что приводит к росту тока, необходимого для насыщения кольцевого постоянного магнита до достижения им необходимых магнитных свойств.
Намагниченный до насыщения кольцевой магнит создаёт мощный остаточный магнитный поток, достаточный для удержания якоря привода (и соответственно, контактов модуля) во включенном положении даже после отключения включающего тока вспомогательным контактом.
Испытания на стойкость к механическим воздействиям показали, что усилие удержания, развиваемого постоянным магнитом, достаточно для того, чтобы удерживать модуль во включенном положении так долго, как это необходимо по условиям эксплуатации, даже при воздействии вибрационных и ударных нагрузок.
Отключающая пружина привода также сжимается в процессе движения якоря, накапливая потенциальную энергию для выполнения операции отключения модуля.
Перемещение якоря передаётся на синхронизирующий вал, поворачивая его в процессе перемещения на угол 44°, для обеспечения индикации состояния модуля, управления вспомогательными контактами и приведения в действие блокировочных механизмов распредустройства.

Способ гашения дуги

Работа выключателя основана на определенных физических процессах, независимо от номинала напряжения аппарата. Рассмотрим подробную схему функционирования.

Оба контакта работают в вакуумной среде, достигаемой за счет удаления газов из дугогасительной камеры. Благодаря этому достигается высокая диэлектрическая прочность. Во время отключения аппарата приводом, между контактами образуется вакуумный зазор. При размыкании поверхностей появляется металлический пар, через который продолжает протекать электрический ток нагрузки. Под действием высокого напряжения, ионы металла движутся в одном направлении, и нагреваются до состояния плазмы.

Выключатель работает на переменном токе, который меняет свое направление по синусоидальному закону. При его нулевом значении происходит угасание дуги, а ионы металла больше не выделяются и оседают на поверхностях контакта или электростатических экранах дугогасительной камеры. Одновременно, в промежутке между контактами образуется вакуум, который препятствует дальнейшему протеканию тока нагрузки и в следующий полупериод синусоиды дуговой разряд не может возникнуть.

Благодаря такому принципу работы, обеспечивается хорошее быстродействие, а разрушение контактов при разряде минимальное.

Элегазовые выключатели принцип действия

Метод гашения дуги разнообразными газовыми смесями давно известен как в научной физике, так и производственном процессе.

Современное оборудование, имеющее внутри себя подготовленный газ, широко используют в производственных целях для предотвращения аварийных ситуаций.

Но то, какие именно процессы в этот момент происходят в самом приборе, известно далеко не всем. Потому ниже мы рассмотрим принципы, на которых основан такой прибор как элегазовый выключатель.

Особенности конструкции

Элегазовый выключатель – прибор, предназначенный для контроля и осуществления надзора за высоковольтными электросетями. По своим конструкционным принципам он близок к масляному выключателю, но вместо масляной смеси внутри находится газ. Также подобное сравнение показывает, что элегазовый аппарат порядком долговечнее и требует меньшего ухода.

Обычно в качестве газа применяют серу, но существую и иные смеси.

Существуют следующие разновидности конструкции:

Также данный прибор классифицируют исходя из метода гашения:

  • вращающий;
  • воздушный;
  • продольный.

Принцип работы и сфера применения

Работа устройства основана на изоляции фаз методом использования элегаза.

Детально принцип работы колонкового выключателя выглядит следующим образом:

  1. Поступление сигнала выключения заставляет сигналы камер разомкнуться.
  2. После этого встроенные контакты прибора создают дугу.
  3. Среда с активированной дугой заставляет газ активно делится на частицы.
  4. Вызванное этим процессом высокое давление, снижает саму качественную проводимость среды и дуга тухнет.

В некоторых конструкциях предусмотрен отдельный компрессор, который помогает нагнетать ситуацию в приборах работающих не низком давлении. Также, при газовом дутье применяется шунтирование, благодаря которому сила тока выравнивается и процесс стабилизируется.

Принципы работы колонковых устройств несколько отличаются:

  • контроль прибора осуществляется трансформаторами и дополнительными приводами. Такой подход обеспечивает возможность удерживания дуги в рамках определенной мощности, а также контролируемое выключение и включение всей сети;
  • сами приводы бывают гидравлическими и пружинными. Сугубо пружинные механизмы полностью построены на механических сочленениях, потому они конструктивно простые и надежные. Гидравлические приводы — являются дополненной гидравликой версией пружинного механизма.

Гидравлическая система более надежна благодаря гидравлической страховке, но при этом обременена рисками, связанными с ней же.

Достоинства и недостатки

Любой механизм или прибор обладает рядом преимуществ и недостатков.

В нашем случае к первым относят:

  1. Многофункциональность – напряжений, с которыми не мог бы справиться прибор, попросту не существует.
  2. Скорость – скорость реакции элегаза измеряется тысячными секунды, что позволяет произвести аварийное отключение в действительно короткие сроки.
  3. Пожаробезопасность и устойчивость к вибрации.
  4. Срок эксплуатации – корпус устройства надежно защищен, а контакты, защищаемые газовой средой, не подлежат износу в принципе.
  5. Работоспособность в сетях высокого напряжения – те же вакуумные приборы этого не могут.

Советуем изучить Что такое коэффициент мощности

На этом лучшие особенности такого выключателя заканчиваются, потому перейдем к недостаткам:

  1. Цена – сама элегазовая смесь стоит дорого, при этом и работы по созданию прибора являются достаточно затратными, потому этот выключатель достаточно дорогой.
  2. Низкие температуры – самый большой минус этого аппарата. Прибор в принципе не способен работать при маленьких температурах, ведь они сильно влияют на физические свойства содержимого, нарушая работоспособность всей системы.
  3. Дорогое обслуживание – работы по ремонту устройств данного типа достаточно редкое явление. Его конструктивные особенности помогают ему оставаться надежным почти всегда, но если ремонт необходим – он будет стоить очень дорого. Во-первых, производить такой ремонт можно только высокоточной техникой, которая сама по себе редкость, во-вторых, специалисты, умеющие обращаться с этой техникой, также просят высокую плату.
  4. Дорогой монтаж – ситуация полностью аналогична обслуживанию. Монтаж крайне сложен в исполнении, потому работы по подготовке специальной платформы может производить только профессионал.

Подробнее ознакомиться с устройством и принципом действия элегазового выключателя вы можете на видео ниже:

Напоследок

Надеемся, что теперь для вас не осталось пробелов в теоретических принципах работы элегазовых выключателей высокого напряжения.

Что это такое и для чего нужно

Назначение этих коммутационных аппаратов заклю чается в следующем :

  • О беспечении надежной коммутации электрической цепи в рабочем и аварийном режиме за минимально возможное время.
  • Л иквидации аварийных отключений воздушных линий за счет возможности автоматического повторного включения.

Разработка первых образцов началась в 30-х годах прошлого века. В это время еще не было совершенных технологических решений, позволяющих создавать аппаратуру, способную поддерживать глубокий вакуум. Поэтому первые образцы коммутационных аппаратов позволяли отключать только незначительные токи при напряжении до 40 кВ .

После проведенной обширной исследовательской работы к 1957 г. удалось объяснить процессы, происходящие при появлении электрической дуги в разреженном газе. Дальнейшие усилия исследователей в течение 20 лет были направлены на поиск способов, позволяющих предотвратить появление перенапряжений, вариантов предотвращения загрязнения внутренних частей дугогасящей камеры частицами металла, проблем герметичности, методов экранирования.

Результатом работы исследователей стало создание вакуумных выключателей — высоковольтных коммутационных аппаратов, способных работа ть в трехфазных сетях переменного тока. Диапазон напряжений, при котором используются такие выключатели, охватывает электроустановки как до 1000 В, так и до 220 к В.

Устройство и конструктивные особенности

Кроме дугогасящей камеры с контактами в конструкцию полюса вакуумного выключателя входит привод и тяговый изолятор. Для сохранения вакуума внутри дугогасящей камеры применяют сильфон. Он не позволяет проникать другим газам внутрь при движении контакта.

Рисунок 3. Конструкция вакуумного выключателя

Один из контактов закреплен неподвижно, второй – подвижный. Он получает движение через тяговый изолятор посредством электромагнитного привода. Меняя полярность постоянного тока, подаваемого на электромагнит, можно размыкать или замыкать контакты. Для удержания деталей привода в выбранном положении используется постоянный круговой магнит.

Для обеспечения оптимальной скорости движения якоря и уменьшения переходного сопротивления контактов применяется пружинная система. Привод выключателя собран в одном корпусе, куда также входят кинематическая и электрическая схемы для контроля и управления работой. У в ыключателя три полюса, которые разделены между собой.

Управление выключателем осуществляется через блок управления, который выносится на отдельную панель (шкаф) или располагается в корпусе выключателя. Блок управления может быть микропроцессорным или работать на электромеханических реле.

Ресурс по включению и отключению контактов – не менее 20 000 операций. Во время всего срока службы выключатель не требует сложного технического обслуживания. Дугогасящая камера не подлежит ремонту и при необходимости заменяется новой. Конструкция привода предусматривает возможность включения и отключения выключателя вручную.

По исполнению вакуумные выключатели выпускаются для установки как в закрытых распределительных устройствах, так и в открытых. Вакуумные выключатели, предназначенные для установки в закрытых распредустройствах, могут быть выкатного или стационарного исполнения. В этом случае они отделяются от токоведущих частей видимым разрывом, осуществляемым при помощи линейного и шинного разъединителей.

Плюсы вакуумного переключателя

Вакуумный выключатель имеют ряд преимуществ:

  1. Элементарная конструкция. Агрегат не имеет дополнительных устройств, усложняющих устройство.
  2. Надежность в использовании. Поломка такого электрооборудования практически исключается
  3. Быстродействующий прибор.
  4. Высокая скорость восстановления прочности между контактами.
  5. Для их работы не требуются масла или другие горючие вещества.

Кроме этого отмечают ряд дополнительных плюсов:

  • устройство не имеет больших весовых и габаритных характеристик;
  • бесшумность при использовании; невысокая стоимость.

К тому же производители гарантируют небольшие расходы на эксплуатацию и ремонт.

Как работает вакуумный выключатель

Номинальный ток выключения системы составляет 20-40 кА, при этом занимая 45 миллисекунд времени на отключение. Вся конструкция выключателя собирается на одном общем приводе, в то же время для каждой фазы существует отдельный изолятор. Соответственно входные проводники подсоединяются на шины подстанции, а выводные – на отходящие контакты.

Принцип работы вакуумного выключателя

Внутренность дугогасительной камеры состоит из работающих силовых контактов, имеющих минимальное сопротивление. Механизм создан таким образом, что верхняя его часть надежно закрепляется, а нижняя – перемещается в осевой направленности.

Стенки вакуумной камеры изготавливаются из специального вещества и различных сплавов, это создает условия для хорошей герметичности и сохранение ее на долгое время. Конструкция имеет сильфонное устройство, которое исключает попадание воздуха.

Также в нем установливается якорь электромагнита, который способен замыкать и размыкать соединения. Группа пружин создает условия для необходимых скоростей движения якоря при переключениях. В корпусе размещается две системы – электрическая и кинематическая, которые регулируют выключатель в любом положении.

Процесс включения и выключения данного устройства производится посредством специальных пружин. При этом на них воздействуют специальные электромагниты или кнопка отключения. Перед использованием необходимо пружину отключения взвести в рабочее положение. Это делается вручную при отсутствии тока или посредством подачи тока в электродвигатель привода. Так, через ключ управления подается ток на соленоид включения.

В процессе этого заводится пружина включения, которая приводит в рабочее состояние вакуумный выключатель. Кроме этого автоматически взводится пружина срабатывания, которая автоматически отключает прибор.

Сферы применения вакуумных выключателей

  • В распределительных электроустановках электрических станций и подстанций.
  • В металлургии для питания печных трансформаторов, снабжающих оборудование для выплавки стали.
  • В нефтегазовой и химической промышленности на пунктах перекачки, переключающих пунктах и трансформаторных подстанциях.
  • Для работы первичных и вторичных цепей тяговых подстанций на железнодорожном транспорте, осуществляет питание вспомогательного оборудования и не тяговых потребителей.
  • На горнодобывающих предприятиях для питания комбайнов, экскаваторов и других видов тяжелой техники от комплектных трансформаторных подстанций.

Достоинства

Вакуумный выключатель 6 кВ – 35 кВ обладает безусловными преимуществами перед другими типами коммутационных устройств подобного назначения. Перечислим их.

  1. Безопасность. Вакуумный выключатель 6 кВ – 35 кВ намного более легкий, чем его аналоги (при равных параметрах номинальных напряжений и токов). Малые динамические нагрузки, небольшая энергия привода, отсутствие газов утечки и масла, бесшумная работа делают его удобным и абсолютно безопасным в плане экологии и взрывчатых свойств.
  2. Автономная работа. Дугогасительная вакуумная камера автономна, то есть нет необходимости пополнять среду. Это снижает расходы, которые идут на эксплуатацию коммутационного устройства.
  3. Высокое быстродействие, значительный механический ресурс. Основная причина – ход контактов (расстояние между ними) в дугогасительной вакуумной камере составляет всего десять миллиметров. У масляных выключателей это же расстояние доходит до нескольких сотен миллиметров. Естественно, прочность самого вакуума на пробой намного выше аналогичного показателя воздушных и масляных сред гашения дуги.

Кроме того, обязательно нужно упомянуть и следующие параметры.

  1. Коммутационная стойкость, высокий ресурс, низкие расходы на обслуживание. Число отключений рабочего тока без ремонтов и ревизий составляет десятки тысяч. Вакуумный выключатель способен отключать токи короткого замыкания в пределах от нескольких десятков до нескольких сотен раз (в зависимости от изготовителя и величины ударного тока и его периодической составляющей). К примеру: масляные выключатели нуждались в ревизии всего после нескольких сотен отключений рабочего тока и до десяти отключений токов КЗ (короткого замыкания). Воздушные выключатели – соответственно от 1000 до 2000 и от о 5 до 15.
  2. Надежность эксплуатации. Количество отказов у «вакуумника» намного ниже, чем у традиционных выключателей.

Ручное включение и отключение

В соответствии с требованиями ГОСТ 687-78 ручное включение выключателя не является обязательным. Для реализации этого режима при отсутствии оперативного напряжения используется так называемый «вспомогательный вход по питанию» БУ/TEL или блок автономного питания BAV/TEL.

Попытка включить выключатель вручную путём воздействия на вал или другим образом может привести к выходу его из строя.

Ручное отключение осуществляется путём механического воздействия на кнопку ручного отключения, которая в свою очередь воздействует через вал привода на якоря электромагнитов и разрывает магнитную систему.Пользоваться кнопкой ручного отключения только в случае невозможности отключения выключателя от блока управления.

КРИТЕРИИ И ПРЕДЕЛЫ БЕЗОПАСНОГО СОСТОЯНИЯ

Климатическое исполнение и категория размещения У2 по ГОСТ1550, условия эксплуатации при этом:

  • наибольшая высота над уровнем моря до 3000 м;
  • верхнее рабочее значение температуры окружающего воздуха в КРУ (КСО) принимают равным плюс 55°С, эффективное значение температуры окружающего воздуха КРУ и КСО – плюс 40°С;
  • нижнее рабочее значение температуры окружающего воздуха – минус 40°С;
  • верхнее значение относительной влажности воздуха 100% при плюс 25°С;
  • окружающая среда невзрывоопасная, не содержащая газов и паров, вредных для изоляции, не насыщенная токопроводящей пылью в концентрациях, снижающих параметры электропрочности изоляции выключателя.

Рабочее положение в пространстве – любое. Для исполнений 59, 60, 70, 71 – основанием вниз либо вверх. Выключатели предназначены для работы в операциях «О» и «В» и в циклах О – 0,3 с – ВО – 15 с – ВО; О – 0,3 с – ВО – 180 с – ВО.
Параметры вспомогательных контактов выключателя приведены в таблице 3.1.
По стойкости к воздействию внешних механических факторов выключатель соответствует группе М 7 по ГОСТ 17516.1-90, при этом выключатель работоспособен при воздействии синусоидальной вибрации в диапазоне частот (0,5*100) Гц с максимальной амплитудой ускорения 10 м/с2 (1 q) и многократных ударов с ускорением 30 м/с2 (3 q).

Таблица 3.1 – Параметры вспомогательных контактов выключателя

№ п/п

Параметр

Номинальное значение

1

2

3

1

Максимальное рабочее напряжение, В (перем. и пост.)

400

2

Максимальная коммутируемая мощность в цепях постоянного тока при t=1 ms, Вт

40

3

Максимальная коммутируемая мощность в цепях переменного
тока при cos j= 0,8, ВА

40

4

Максимальный сквозной ток, А

4

5

Испытательное напряжение, В (пост.)

1000

6

Сопротивление контактов, мкОм, не более

80

7

Коммутационный ресурс при максимальном токе отключения, циклов В-О

106

8

Механический ресурс, циклов В-О

106


 

Рисунок 3.1

Выключатели отвечают требованиям ГОСТ687, МЭК-56 и технических условий ТУ У 25123867.002-2000 (а также ИТЕА 674152.002 ТУ; ТУ У 13795314.001-95).
Зависимость коммутационного ресурса выключателей от величины отключаемого тока представлена на рис. 3.1.

Выключатели отвечают требованиям ГОСТ 687, МЭК-56 и технических условий ТУ У 25123867.002-2000 (а также ИТЕА 674152.002 ТУ; ТУ У 13795314.001-95).
Зависимость коммутационного ресурса выключателей от величины отключаемого тока представлена на рис. 3.1.

Какие бывают вакуумные выключатели

Все вакуумные выключатели подразделяются на две большие группы: выключатели для напряжения до 35кВ и устройства для напряжения свыше 35кВ.

На рамке первого вида прикрепляются три полюса. При этом на каждом из них выполняется дугогасительная камера, а также узел поджатия соединений. Кроме этого, на раме установливается электромагнитный привод. С помощью этого привода происходит руководство дугогасительной вакуумной камерой.

Устройство, рассчитанное на напряжение свыше 35кВ, имеет на каждой раме уже по несколько камер. Если их две, то они располагаются напротив друг друга. Руководство ими происходит посредством изоляционной тяги. В случае если камер три, они устанавливаются в ряд друг за другом. В этом случае ими управляет гидравлическая система.

Вакуумные выключатели типа ВВЭ-10, предназначаются для электролиний, где присутствует напряжение 10кВ, с частотой от 50-6оГц, при этом номинальный ток 630-3200А. При этом сила включаемых ударных токов от 52 до 82кА, а выключаемых – от 20 до 31,5кА.

На основании этого устройства изготовливаются дугогасительные камеры двух полюсов с электрическими подводками и электромагнитным приводом, который руководит функциями срабатывания данного прибора. На лицевой панели располагаются дополнительные устройства, которые регулируют систему управления и сигнализации.

Вакуумные устройства типа ВВ/TEL-10-8/800У2. Используется в электроцепях с напряжением до 20кВ трехфазного переменного тока, соответствующего величине в 50Гц и заземленным нулем. Номинальный ток данного выключателя составляет 8кА.

Благодаря конструктивным особенностям выключатель обладает рядом преимуществ:

  • при работе от сети потребляет малое количество энергии;
  • обеспечен функцией телесигнализации;
  • надежный в эксплуатации;
  • не требует ремонта в период своей службы, срок которой составляет 25 лет;
  • устанавливается в любых электрошкафах различной модификации;
  • безопасен в использовании для окружающей среды.

ОБЩИЕ СВЕДЕНИЯ

Вакуумные выключатели BB/TEL (далее – выключатели) предназначены для работы в комплектных распределительных устройствах (КРУ) и камерах стационарного одностороннего обслуживания (КСО) внутренней и наружной установки класса напряжения до 20 кВ трёхфазного переменного тока 50 Гц для систем с изолированной и заземлённой нейтралью.
В основе конструктивного решения выключателя лежит использование пофазных электромагнитных приводов с «магнитной защёлкой», механически связанных общим не несущим нагрузку, валом-синхронизатором. Параллельно соединённые катушки электромагнитных приводов фаз выключателя при выполнении команд подключаются к предварительно заряженным конденсаторам в блоках управления (далее БУ/TEL). Такая конструкция позволила достичь следующих отличительных особенностей по сравнению с традиционными вакуумными выключателями (ВВ) (см. табл. 2.1):

  1. высокий механический и коммутационный ресурс;
  2. малое энергопотребление по шинам оперативного напряжения (заряд и поддержание в параметрах конденсаторных ёмкостей «ВКЛ», «ОТКЛ»);
  3. малые габариты и вес;
  4. лёгкость и простота адаптации в любые типы КРУ, КСО;
  5. возможность использования в широком диапазоне питающего оперативного напряжения вторичных цепей;
  6. необслуживаемость на протяжении всего срока эксплуатации;
  7. низкая трудоёмкость производства и, как следствие, умеренная цена.

Для управления выключателями отделение устройств управления промышленной группы «Таврида Электрик» выпускает блоки управления серий BU/TEL, БУ/ТЕL.
Структура условного обозначения выключателей:

BB/TEL-X-X/X-XX-X

Выключатель вакуумный
   Наименование серии
      Номинальное напряжение, кВ
         Номинальный ток отключения, кА
            Номинальный ток, А
               Климатическое исполнение и категория размещения
                  Конструктивное исполнение по каталогу

Пример записи обозначения выключателя напряжением 10 кВ с номинальным током отключения 12,5 кА, номинальным током 630 А, климатического исполнения У2, конструктивного исполнения по каталогу:

Выключатель вакуумный

Устройство и принцип действия

Вакуумные выключатели предназначены для совершения коммутационных операций в электроснабжающих сетях высокого напряжения. Конструктивно вакуумный выключатель состоит из трех отдельных полюсов или колонок (по одной на каждую фазу). Все колонки устанавливаются на одном приводе посредством опорного изолятора из полимера, фарфора или текстолита. У каждой из них имеются два вывода для подключения ошиновки. Устройство состоит из двух контактов, подведенных под соответствующие потенциалы полюсов.

Один из них выполняется подвижным, а второй – стационарным, как и в других типах выключателей. Силовые контакты вакуумного выключателя располагаются внутри герметичной камеры, способной сохранять вакуум в течение длительного периода времени. Для чего в состав камеры включаются специальные металлические сплавы и керамические добавки.

Для постоянного поддержания состояния сильно разреженной газовой среды, внутри вакуумной камеры, устройство комплектуется сильфонным компонентом. Он исключает возможность проникновения воздуха или другого газа внутрь вакуумной камеры.

Рисунок 2 – Конструкция вакуумного выключателя

Вакуумные выключатели

Для повышения качества поставляемой энергии от электрических сетей, распределительные устройства комплектуются современными высоковольтными выключателями с вакуумной дугогасительной средой.

Благодаря качественному отличию от устаревших автоматических выключателей, вакуумные выключатели используются и для вновь возводимых подстанций, и для замены коммутационного оборудования на уже существующих.

  • 1. Назначение
  • 2. Устройство и принцип действия
  • 3. Принцип гашения электрической дуги
  • 4. Преимущества и недостатки вакуумных выключателей
  • 5. Особенности эксплуатации
  • 6. Особенности выбора
  • 7. Сферы применения вакуумных выключателей
  • Выводы

Ряд преимуществ вакуумных дугогасительных устройств обуславливается более эффективным принципом гашения дуги и создает предпосылки для предотвращения аварийных режимов энергосистемы и позволяет существенно сократить затраты на обслуживание.

Рисунок 1 – Общий вид вакуумного автоматического выключателя

Вакуумный выключатель — это устройство, предназначенное для эксплуатации в составе электрических высоковольтных сетей. Название он унаследовал от особенности конструкции – вакуумной камеры, благодаря которой достигается моментное гашение электрической дуги. Прибор используют в качестве коммутаторов, призванных выполнять отключение оборудования на случай аварийных ситуаций.

Схемы электрические принципиальные работы выключателей

Назначение схемы управления:

  • оперативное включение и отключение выключателя;
  • блокирование против повторения операций включения и отключения выключателя, когда команда на включение остается поданной после автоматического отключения;
  • сигнализация положения выключателя с помощью коммутирующих контактов для внешних вспомогательных цепей и для цепей контроля.

Описание работы схемы

Подготовка схемы к включению

Для подготовки схемы к включению подается переменное оперативное напряжение или постоянное (выпрямленное) на клеммы ХТ:26 и ХТ:27 (цепи мотор-редуктора заводки пружины включения). Мотор-редуктор взводит пружину включения. После завершения взвода срабатывают блок-контакты положения привода SQM1,2, размыкая цепь питания мотор-редуктора.

Также при этом срабатывает реле повторения сигнала положения привода KV1 по цепи: клемма ХТ:26, блок-контакт положения привода SQM1-2, диодный мост VD4, обмотка реле блокировки KBS, блок-контакт положения привода SQM2-2, клемма ХТ:27. Реле своими контактами KV1-3 подготавливает цепь включения, контактами KV1-2 подготавливает внешние цепи контроля (РКВ), контактами KV1-1 разрывает цепи блокировки от повторного включения.

Вакуумный выключатель ВВР-10-20/630 Нажмите на картинку для увеличения

Включение выключателя

Для включения, переменное оперативное напряжение или постоянное (выпрямленное) подается на контакты ХТ:23 и ХТ:25, при этом напряжение питания через выпрямитель на диодном мосте VD1 подается на катушку электромагнита включения YAC по цепи: ХТ:23, н.з. контакты реле блокировки KBS, н.о. контакты реле повторения сигнала положения привода KV1.3, н.з. контакты положения выключателя Q6.1, диодный мост VD1, самовосстанавливающийся предохранитель FU1, контакт ХТ:25.

Советуем изучить Экспертный обзор всех существующих вариантов соединения проводов

Электромагнит включения YAC срабатывает, выключатель включается. При включении срабатывают и блок-контакты выключателя Q1…Q10. Блок-контакты Q7.1, Q8.1 подготавливают команду отключения.

Отключение выключателя

Для отключения, переменное оперативное напряжение или постоянное (выпрямленное) подается на контакты ХТ:28 и ХТ:29, при этом напряжение питания через выпрямитель на диодном мосте VD5 подается на катушку электромагнита включения YAТ по цепи: ХТ:28, н.з. контакты положения выключателя Q8.2, диодный мост VD5, самовосстанавливающийся предохранитель FU3, контакт ХТ:29.

Электромагнит отключения YAТ срабатывает и выключатель отключается.

Отключение выключателя также может производиться от токовых электромагнитов YAA1 и YAA2 для схем с дешунтированием или электромагнитом отключения YAV независимого источника питания.

Для отключения выключателя может использоваться конденсатор С3, установленный в схеме выключателя. Конденсатор С3 заряжается после подачи напряжения на контакты 26,27 блока зажимов выключателя. Для отключения выключателя необходимо внешними цепями управления соединить контакт ХТ:32 с контактом ХТ:28 блока зажимов(при этом контакты ХТ:26 И ХТ:29 должны быть объединены в общую цепь). Отключение выключателя произойдет по цепи (+) С3, самовостанавливающийся предохранитель FU2, ХТ:32, ХТ:29, Q7.1, Q8.1, VD5, YAT, ХТ:27(ХТ:29). Для отключения от конденсатора можно использовать и другие электромагниты, установленные в схеме выключателя (кроме токовых).

Принцип гашения электрической дуги

При разрыве контактов между поверхностями возникает ионизация пространства. В вакуумных выключателях применяется технология, отличная от воздушных и масляных. Основной принцип основан на том, что в идеальном вакууме отсутствует какое-либо вещество, способное выделять заряженные частицы. Поэтому в момент разделения контактов, из-за разности потенциалов, единственным источником ионизации являются пары раскаленного металла. Они продолжают движение между контактными поверхностями, но при переходе синусоиды электрического тока через ноль, заряженные частицы утрачивают энергию для ионизации и перемещения и их место занимает пустое пространство с высокой электрической плотностью и дуга рвется. Ионы металлов примыкают к ближайшей поверхности – контактам или стенкам камеры. Такой принцип действия позволяет сократить время на прекращение горения дуги и предоставляет ряд преимуществ, в сравнении с другими типами коммутационных аппаратов. Однако чрезмерные коммутационные перенапряжения могут привести к деформации поверхности, что будет препятствовать нормальному замыканию контактов, увеличит переходное сопротивление и вызовет перегрев внутри вакуумной камеры.

Выводы

Вакуумные выключатели с номинальным напряжением 6, 10 и 35 кВ являются одним из наиболее востребованных сегодня типов коммутационного оборудования высоковольтных сетей. Они более надежны в эксплуатации, долговечны и безопасны для обслуживающего персонала и окружающей среды. Вакуумные выключатели от других видов устройств отличаются относительной простой и надёжной структурой. Поэтому этот вид оборудования служит длительное время без особых нареканий.

Ресурс естественного износа определяется числом операций, равным не менее 20000. При условии своевременного производства технического обслуживания этот ресурс возрастает на 5-10%. Между тем, техническое обслуживание ВВ ограничивается небольшим количеством лёгких операций.

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий