Принцип работы
Большая поверхность свечения люминесцентных ламп создает ровный рассеянный свет Люминесцентная лампа – это газоразрядный источник света. Излучение происходит из-за реакции смеси газов, находящихся в колбе. Раньше подобные приборы практически не использовались в бытовых условиях, так как считалось, что они могут навредить зрению. Но после проведения исследований ученые пришли к выводу, что лучи отлично воспринимаются человеческим глазом. Из чего состоит люминесцентная лампа, зависит от ее предназначения. Смесь паров внутри может быть различной.
Конструктивно устройство представляет собой стеклянную трубчатую колбу, на внутреннюю поверхность которой нанесен люминофор. На торцах расположены электроды. Внутри трубки – пары ртутит и смесь газов.
Принцип работы люминесцентной лампы заключается в следующем:
- Под действием электрического поля в лампочке возникает газовый разряд.
- Ток, который проходит через пары, вызывает ультрафиолетовое излучение, из-за чего начинает светиться люминофор.
Колба сделана из стекла, которое не пропускает УФ лучи, а дает лишь видимый свет. Исключение – бактерицидные лампы, для применения которых нужно испускание ультрафиолета. Преимущества люминесцентных ламп дневного света:
- высокая световая отдача;
- экономия электричества;
- прочность – для изготовления плафонов используются качественные материалы;
- длительность работы;
- разнообразие форм и размеров;
- широкий диапазон цветовых температур;
- создает теплый естественный свет, близкий к дневному излучению.
Недостатки:
- наличие в составе ламы вредных компонентов (ртуть);
- сложность утилизации;
- ограничения по количеству циклов включения и выключения;
- чувствительность к влажности;
- полное включение происходит не сразу;
- может гудеть и мерцать во время работы;
- зависимость стабильной работы от температуры.
Устройство люминесцентной лампы Стоимость лампочек дневного света ниже, чем у светодиодов. Но она больше, чем у ламп накаливания или галогенных приборов.
Конструкция люминесцентной лампы
Лампа линейная люминесцентная относится к газоразрядным светильниками низкого давления, где электрический разряд образуется в газовой среде, смешанной с ртутными парами.
Основным конструктивным элементом является стеклянная колба со стандартными диаметрами 12, 16, 26 и 38 мм. В обычных лампах она имеет прямую форму, а в компактных применяется более сложная конфигурация. На концах цилиндра установлены стеклянные ножки, герметично впаянные в торцы. Они предназначены для размещения электродов, изготовленных из вольфрамовой проволоки. В свою очередь, электроды соединяются методом пайки со штырьками цоколя.
Во внутреннем пространстве колбы создается вакуум, после чего сюда закачивается инертных газ, чаще всего аргон. К нему добавляется небольшое количество ртути или ртутного сплава. Поверхность электродов покрывается активными веществами, содержащими окислы бария, кальция, стронция и других элементов. Их работа заметно влияет на коэффициент пульсации.
Под действием приложенного напряжения в газовой среде возникает разряд электричества, значение которого ограничено компонентами пускорегулирующей аппаратуры. Одновременно из электродов начинает испускаться поток электронов, подвергающих ионизации атомы ртути. В результате, возникает видимое свечение и ультрафиолетовое излучение, невидимое обычным зрением. Далее, ультрафиолет попадает на слой люминофора, покрывающего внутреннюю поверхность колбы. Под его воздействием возникает световое излучение в видимой части спектра.
Таким образом, свечение лампы происходит за счет электрического разряда (в меньшей степени) и светящегося люминофорного покрытия, выдающего основную часть светового потока. В зависимости от состава люминофора можно получать любые цвета, начиная от обычного белого, и заканчивая разнообразными тонами и оттенками, количество которых постоянно увеличивается.
Монтаж люминесцентных осветительных приборов
Установка прибора зависит от его конструкции. Устройства для установки ламп закрепляются к потолку, на стену, колонну с помощью дюбелей и закладных частей. Также при монтаже устанавливается розетка для соединения светильника с сетью питания.
При монтаже стоит учитывать и схему подключения лампы. Раньше использовалась одна схема с дросселями и стартерами, которая называлась электромагнитным балластом. Сейчас разнообразие схем обширно, но производитель обязан указывать информацию о ней на приборе. Лучшим способом установки люминесцентного источника света является подвеска в осветительную коробку. В комплекте поставляются все нужные для подключения детали.
Разновидности и характеристики
Разновидности и характеристики
Классификация люминесцентных ламп
Люминесцентные лампы (ЛЛ) делятся на осветительные общего назна чения и специальные. К ЛЛ общего назначения относят лампы мощнос тью от 15 до 80 Вт с цветовыми и спектральными характеристиками, имитирующими естественный свет различных оттенков. Для классифика ции ЛЛ специального назначения используют различные параметры. По мощности их разделяют на маломощные (до 15 Вт) и мощные (свыше80 Вт); потипу разряда — на дуговые, тлеющего разряда и тлеющего свечения;по излучению — на лампы естественного света, цветные лампы, лампы со специальными спектрами излучения, лампы ультрафиолетового излучения; поформе колбы — на трубчатые и фигурные;по светораспределению — с ненаправленным светоизлучением и с направленным, например, рефлек торные, щелевые, панельные и др.
У ламп с улучшенным качеством цветопередачи после букв, обозначающих цвет, стоит буква Ц, а при цветопередаче особо высокого качества — буквы ЦЦ. Маркировка ламп тлеющего разряда начинается с букв ТЛ.
Разновидности спектрального состава люминесцентных ламп
Спектральный состав
видимого излучения зависит от состава люминофо ра, в соответствии с чем лампы обозначают буквами. Различную цветность можно получить с помощью люминофора — галофосфата кальция в зависи мости от цветовой температуры лампы.
Цветовой температурой
называется температура абсолютно черного тела, при которой цвет его излучения совпадает с цветом самого тела (К — Кельвин, Т = t + 273, где Т — температура в К, t — температура в °С).
По спектру излучаемого света
лампы подразделяются:
ЛБ — лампы белого света с цветовой температурой 4200 К, соответству ющей цветовой температуре яркого солнечного дня;
ЛХБ — лампы холодно-белого света с цветовой температурой 4800 К;
ЛТБ — лампы тепло-белого света с цветовой температурой 2800 К, соответствующей цветности излучения ламп накаливания;
ЛД — лампы дневного света, имеющие цветовую температуру 6500 К, соответствующую цветовой температуре голубого неба без солнца.
Для осветительных установок,
в которых требуется правильная цветопере дача, выпускаются лампы:
ЛЕЦ — лампы естественного (Е) цвета; ЛТБЦ
— лампы тепло-белого (ТБ) цвета; ЛДЦ — лампы дневного (Д) цвета.
Стоящие после обозначения цифры указывают мощность лампы в ваттах. Люминесцентные лампы выпускаются мощностью 8… 150 Вт.
Пример 1.ЛТБ 30 означает: люминесцентная, тепло-белого цвета, мощность 30 Вт. Пример2. ЛБ 20 обозначает: люминесцентная лампа белого цвета мощностью 20 Вт.
Световой поток после 70% средней продолжительности горения снижается до 70% среднего номинального потока. Наиболее долго лампы служат при комнатной температуре и номинальном напряжении. Повышение и понижение напряжения снижают срок службы, но к повышениям напряжения люминесцентные лампы значи тельно менее чувствительны, чем лам пы накаливания. Люминесцентные лампы показаны на рис. 14.5.
Раньше их называли: • прямыми (рис. 14.5.а);
. кольцевыми (рис.14.5.6); « U -образными (рис. 14.5.в).
Эти названия нашли отражение в старых обозначениях светильников для люминесцентных ламп. В настоящее время все лампы, кроме прямых, называют фигурными (рис. 14.5.б,в).
Технические характеристики наиболее распространенных лампТаблица 14.1
Тип лампы | Мощность, Вт | Световойпоток, лм | Продолжительность горения, ч | Тип цоколя |
Лампы люминесцентные ртутные низкого давления | ||||
Л6-20 | 20 | 1200 | 7500 | Ц2Ш-13/35 |
ЛБ-40 | 40 | 3000 | ||
ЛВ-80 | 80 | 5220 | ||
ЛД-40 | 40 | 2340 | ||
ЛД-80 | 80 | 4070 | ||
ЛДЦ-40 | 40 | 2100 | ||
ЛДЦ-80 | 80 | 3610 | ||
ЛТБ-40 | 40 | 2780 | ||
ЛТБ-80 | 80 | 4720 | ||
ЛХБ-40 | 40 | 2780 | ||
ЛХБ-80 | 80 | 4600 |
Классификация и типология люминесцентных ламп
Естественно, что прогресс в производстве таких изделий, как люминесцентные лампы, не стоит на месте, и если ранее применялись в основном аналогичные экземпляры со схожими техническими характеристиками, то сегодня потребитель может подобрать себе тот вариант, который будет для него наиболее оптимальным и эффективным.
Существует множество признаков, по которым можно классифицировать эти лампы, но тем не менее, самым основным из, все же, будет признак показателей давления.
На данный момент на рынке представлены газозарядные ртутные экземпляры высокого и низкого давления.
Лампы высокого давления нашли свое применение в основном в освещении вне помещений. Поскольку такие изделия обладают высокой мощностью, то внутри здания их свет будет довольно неприятен для восприятия его глазом.
Также лампы высокого давления отлично подходят для сборки каких-либо осветительных установок.
Лампы низкого давления обладают сравнительно меньшей мощностью, а значит, подходят для применения внутри зданий.
Назначение помещения может быть абсолютно любым: люминесцентные лампы такого показателя подойдут и для цеховых и производственных зданий, и для жилых помещений.
Помимо разделения ламп по принципу давления существует еще и классификация по диаметру трубки или колбы лампы, а также по схеме зажигания.
Для примера можно взять продукты самых известных производителей, например, Osram и Philips. Если внимательно присмотреться к данным на упаковке, то можно увидеть букву и цифру рядом. Это и есть маркировки типа изделия.
Итак, люминесцентные лампы подразделяются на:
- Т5 – лампы с таким показателем являются довольно редким явлением, не нашедшим признания у покупательского сегмента. Стоимость их довольно высока, однако степень светоотдачи показывает прекрасные результаты – до 110 лм/ватт. Стоит отметить, что сейчас производители значительно увеличили объемы производства люминесцентных ламп с таким показателем.
- Т8 – новый продукт, имеющий довольно высокую цену и рассчитанный на нагрузку не более 0,260 А.
- Т10 – аналог лампам маркировки Т12, отличающийся довольно низким качеством и уровнем эффективности.
- Т12 – лидер рынка люминесцентных ламп. Включает в себя широкое разнообразие подтипов, что говорить, практически все стандартные модели относятся к этой группе. В их число входят представители практически всех производителей люминесцентных ламп.
Упомянутый выше принцип классификации по схеме зажигания имеет под собой два типа: требующие стартера и не требующие его.
Мощность тоже является довольно значимой характеристикой люминесцентных ламп, соответственно, это тоже стало фактором для выделения отдельной классификации.
По показателям мощности лампы подразделяются на:
- Стандартные – с маркировкой Т12;
- HO – лампы высокой мощности, однако, отличаются сравнительно меньшей светоотдачей;
- VHO – лампы, способные выдержать нагрузку до 1,5 А;
- «Эконом» — варианты люминесцентных ламп.
К числу критериев, по которым можно распределить лампы по группам, относят и длину.
Вариантов эта дифференциация представляет великое множество. Как правило, производители в обязательном порядке указывают эти данные в инструкции или на упаковке.
Классификация по использованию стартера
Стоит отметить и тот факт, что люминесцентные лампы можно разделить на виды и по типу подключения их.
Более подробно о том как подключать люминесцентные лампы различными способами, можно прочитать в этой статье.
Однако в этом случае выделить какие-либо точные категории довольно сложно, поскольку каждый тип, выделенный, например, по мощности или необходимости присутствия стартера, требует соблюдения своих нюансов.
Характеристики источников света
Характеристика люминесцентных ламп Люминесцентные лампы имеют не только технические характеристики. Как любое электротехническое изделие, они обладают электрическими характеристиками, а как осветительный прибор – световыми параметрами.
К электрическим характеристикам относятся:
- Номинальное напряжение. Напряжение сети, которое подходит для работы лампы. Составляет 220 В или 110 В.
- Рабочее напряжение. Величина на лампе при ее горении. Равняется половине номинального и составляет 100-110 В для сети 220 В и 45-60 В для электросетей 110 В.
- Напряжение зажигания. Величина на лампочке, необходимая для появления разряда. Она значительно выше сетевого значения и не является постоянной величиной. Зависит от схемы зажигания, условий окружающей среды.
- Номинальная мощность. По этому показателю выделяют слабомощные (до 18 Вт), средней мощности (до 58 Вт) и мощные (от 58 Вт) устройства. Также в продаже можно найти высокоинтенсивные лампочки с мощностью 150 Вт, но они практически не используются из-за малой эффективности.
- КПД. Люминесцентное освещение дает коэффициент полезного действия превышает 20%.
- Диаметр колбы – 12,16,26,38 мм.
- Размеры цоколя 14 и 27 мм.
Сравнительная таблица различных типов ламп Светотехнические характеристики газоразрядных ламп:
- Номинальный световой поток. Задается через 100 часов после горения.
- Индекс цветопередачи. Зависит от исполнения лампы. В стандартных приборах равняется 50-70%, в лампах с повышенной цветопередачей составляет 97%.
- Цветовая температура. Показывает, какой оттенок будет у свечения. Люминесцентные лампы выполняются в диапазоне от 2700 К до 6500 К.
Эксплуатационные характеристики:
- Световая отдача зависит от цветности и мощности. Наибольшей обладают бытовые лампы ЛБ 40 Вт – 80 лм/Вт. Из выпускаемых ламп максимальная светоотдача у серии Т5 с электронным ПРА – 104 лм/Вт.
- Средняя продолжительность горения. Зависит от электродов и прочности покрывающей их оксидной пленки. У ламп средней мощности продолжительность составляет 15000 часов.
- Коэффициент пульсаций. В большинстве люминесцентных ламп он равняется 23%, кроме устройств с улучшенной цветопередачей, в которых достигается значение 70%.
- Зависимость от температуры окружающей среды. При низких температурах ухудшаются условия зажигания. Диапазон рабочих температур составляет от 5 до 55° С.
- Утилизация. Так как в лампе содержится ртуть и другие вредные компоненты, ее нужно утилизировать особым способом. Для этого прибор нужно отнести и сдать в специальный пункт приема.
Маркировка
На сегодняшний день существует несколько маркировок люминесцентных ламп, сейчас рассмотрим каждую из них.
Отечественная
Отечественная маркировка представлена цифро-буквенной аббревиатурой, которая расшифрована на картинке.
Первая буква «Л» — лампа.
Вторая буква – характеристика светового потока (Д — дневной, ХБ — холодный белый, ТБ — белый, ЕБ — естественно белый, Б — белый, УФ – ультрафиолетовый, Г – голубой, С – синий, К – красный, Ж – желтый, З – зеленый).
Третья буква – качество цветопередачи (Ц – улучшенное качество, ЦЦ – особо высокое качество).
Четвертая буква – конструктивная особенность (А –амальгамная, Б – быстрого пуска, К – кольцевая, Р – рефлекторная, У – у образная).
Цифра после букв – мощность в Вт.
Обращаем Ваше внимание на то, что в маркировке люминесцентной лампы могут присутствовать такие аббревиатуры, как ЛХЕ и ЛЕ, что означает естественного свет и холодный естественный свет
Зарубежная
Зарубежная маркировка представлена в данной таблице:
Как вы видите, вместо цифро-буквенного шифра используется трехзначное число, а также определение в виде простой подписи на английском языке (к примеру, марка cool white так и переводиться «холодный свет»).
Цветовая температура
Остановимся подробней на качественном показателе света – цветовой температуре. Человеческий глаз воспринимает источники в диапазоне от 2500 К до 10000К, при этом:
- 2500 – 2800 К ощущаются как очень теплый свет (свечи, открытое пламя);
- 2800 – 3500 К – аналог закатного солнца;
- 3500 – 5000 К – нейтральное освещение (утренний свет);
- 5000 К и выше – холодный дневной свет.
Эксперты по изучению влияния света на человеческий организм рекомендуют для освещения дома выбирать яркий теплый свет, так как он наиболее полезен для зрения, расслабляет и не подавляет выработку меланина, гормона сна.
В магазине и других общественных помещениях используют мощный нейтральный свет, который не искажает цветопередачу. По отзывам потребителей, дневной свет лучше применять для рабочих зон, он бодрит и повышает работоспособность.
Электронный балласт
Недостатки схемы ЭмПРА вызвали необходимость поиска более оптимального способа подключения. В ходе изысканий был изобретен способ с участием электронного балласта. В данном случае используется не сетевая частота (50 Гц), а высокие частоты (20 – 60 кГц). Удается избавиться от вредного для глаз мигания света.
Внешне электронный балласт — это блок с выведенными наружу клеммами. Внутренняя часть устройства содержит печатную плату, на основе которой можно собрать всю схему. Блок малогабаритен, благодаря чему помещается в корпусе даже небольшого прибора освещения. Включение осуществляется гораздо быстрее по сравнению со стандартом ЭмПРА. Работа устройства не доставляет акустического дискомфорта. Данный способ подключения называется бесстартерным.
Разобраться в принципе функционирования устройства такого типа не сложно, поскольку на его обратной стороне есть схема. На ней показано количество ламп для подключения и поясняющие надписи. Имеется информация о мощности лампочек и других технических параметрах устройства.
Подключение осуществляется следующим образом:
- Первый и второй контакт соединяют с парой ламповых контактов.
- Третий и четвертый контакты направляют на оставшуюся пару.
- На вход подают электропитание.
Использование умножителей напряжения
Данный вариант позволяет подключать люминесцентную лампу без применения электромагнитного баланса. Используется обычно для увеличения периода эксплуатации лампочек. Схема подключения сгоревших ламп дает возможность работать источникам света еще какое-то время при условии, что их мощность не более 20 – 40 Вт. Нити накала допускаются как пригодные для работы, так и перегоревшие. В любом случае выводы нитей необходимо закоротить.
В результате выпрямления напряжение увеличивается в два раза, поэтому лампочка включается почти мгновенно. Конденсаторы C1 и С2 подбираются исходя из рабочего напряжения 600 Вольт. Недостаток конденсаторов состоит в их больших размерах. В качестве конденсаторов С3 и С4 отдают предпочтение слюдяным устройствам на 1000 Вольт.
Люминесцентные лампы несовместимы с постоянным током. Очень скоро ртути в устройстве накапливается столько, что свет становится ощутимо слабее. Чтобы восстановить яркость свечения, меняют полярность путем переворачивания лампочки. Как вариант, можно установить переключатель, чтобы каждый раз не снимать лампу.
Подключение без стартера
Метод с использованием стартера сопряжен с длительным разогревом лампочки. К тому же эту деталь необходимо часто менять. Обойтись без стартера позволяет схема, где подогрев электродов осуществляется с помощью старых трансформаторных обмоток. Трансформатор выступает в роли балласта.
На лампочках, используемых без стартера, должна быть надпись RS (быстрый старт). Источник света с запуском через стартер не подходит, так как его проводники долго греются, а спирали быстро сгорают.
Последовательное подключение двух лампочек
В данном случае необходимо соединить две люминесцентные лампы с одним балластом. Все устройства подключают последовательным образом.
Для проведения электромонтажных работ понадобятся такие детали:
- индукционный дроссель;
- стартеры (2 единицы);
- люминесцентные лампочки.
Подключение выполняется в следующем порядке:
- Присоединяем к каждой лампочке стартеры. Соединение выполняем параллельно. Место соединения — штыревой вход на торцах прибора освещения.
- Свободные контакты направляем в электрическую сеть. Для соединения используем дроссель.
- К контактам источника света присоединяем конденсаторы. Позволят снизить интенсивность помех в сети и компенсировать реактивность мощности.
Свойства ртути
Все опасения при использовании люминесцентного освещения родились не на пустом месте. Ведь в производстве ламп используется небольшое количество паров ртути, которые ядовиты для человека, как считает большинство. Понять смысл этого стереотипа позволят знания о свойствах этого единственного жидкого в естественных условиях металла.
Из курса химии мы знаем, что при комнатной температуре ртуть находится в жидком состоянии. Сам по себе это тяжелый серебристый металл не представляет опасности. Однако ртуть способна испаряться даже при такой невысокой температуре, не говоря уже о более серьезных ее значениях. Эти пары способны не только самостоятельно распределяться по воздуху внутри помещения, но и образовывать летучие соединения с органическими веществами, абсорбироваться на предметах обихода, мебели и даже на обычных частичках пыли.
Капли ртути в пробирке
Пары могут проникать через строительные материалы, толщу воды и почвы. Жидкая ртуть обладает слабой вязкостью и большим поверхностным натяжением, что способствует разделению одной капли на множество более мелких. Это еще больше увеличивает площадь испарения. Частицы жидкой ртути очень подвижны, что сильно затрудняет демеркуризацию помещения. Они легко растворяются в органических растворителях и даже в воде в отсутствии свободного кислорода. При рН = 8 растворимость находится на минимуме. При изменении этого показателя в любую сторону растворимость увеличивается. Жидкая ртуть способна без труда растворять некоторые металлы, даже благородные. При этом образуются так называемые амальгамы. В связи с этим закономерно, что это вещество разрушающе действует на металлические конструкционные материалы.
Химические свойства ртути таковы, что она очень сильно ионизирована, а это создает большие сложности при превращении ее паров в относительно безопасные соли. При комнатной температуре невозможно ее окисление на воздухе. Нужны очень сильные окислители. Не подходят даже разбавленные кислоты, такие, как серная и соляная. Требуется концентрированная азотная кислота или царская водка, чтобы прошла реакция окисления ртути. Именно сложность нейтрализации этого ядовитого вещества и обуславливает необходимость принятия серьезных мер безопасности при использовании ртути в различных приборах, в том числе и в люминесцентных лампах.
2.6. Линейные люминесцентные лампы
2.6.1.
Стандартные Рис. 11. Спектральная характеристика стандартных люминесцентных ламп
Таблица 2.6.1. Стандартные люминесцентные лампы
Тип | Мощность, Вт | Цоколь | Цветопередача | Световой поток, лм | Длина l, мм | Диаметр, мм |
L 4/25 | 4 | G5 | 2A | 120 | 136 | 16 |
L 6/25 | 6 | G5 | 2A | 240 | 212 | 16 |
L 8/25 | 8 | G5 | 2A | 330 | 288 | 16 |
L 13/25 | 13 | G5 | 2A | 700 | 517 | 16 |
L 15/25 | 15 | G13 | 2A | 720 | 438 | 26 |
L 16/25 | 16 | G13 | 2A | 950 | 720 | 26 |
L 18/20 | 18 | G13 | 2B | 1150 | 590 | 26 |
L 18/25 | 18 | G13 | 2A | 1100 | 590 | 26 |
L 18/30 | 18 | G13 | 3 | 1150 | 590 | 26 |
L 30/25 | 30 | G13 | 2A | 1800 | 895 | 26 |
L 36/20 | 36 | G13 | 2B | 2850 | 1200 | 26 |
L 36/25 | 36 | G13 | 2A | 2600 | 1200 | 26 |
L 36/30 | 36 | G13 | 3 | 2850 | 1200 | 26 |
L 36/25-1 | 36 | G13 | 2A | 2300 | 970 | 26 |
L 38/25 | 38 | G13 | 2A | 2300 | 1047 | 26 |
L 58/20 | 58 | G13 | 2B | 4600 | 1500 | 26 |
L 58/25 | 58 | G13 | 2A | 4100 | 1500 | 26 |
L 58/30 | 58 | G13 | 3 | 4600 | 1500 | 26 |
Таблица 2.6.2. Люминесцентные лампы в S-исполнении
Тип | Мощность, Вт | Цоколь | Цветопередача | Световой поток, лм | Длина l, мм | Диаметр, мм |
L 20/25 S | 20 | G13 | 2A | 1050 | 590 | 38 |
L 20/20 S | 20 | G13 | 2B | 1150 | 590 | 38 |
L 20/30 S | 20 | G13 | 3 | 1150 | 590 | 38 |
L 40/25 S | 40 | G13 | 2A | 2500 | 1200 | 38 |
L 40/20 S | 40 | G13 | 2B | 2800 | 1200 | 38 |
L 40/30 S | 40 | G13 | 3 | 2800 | 1200 | 38 |
L 65/25 S | 65 | G13 | 2A | 4000 | 1500 | 38 |
L 65/20 S | 65 | G13 | 2B | 4400 | 1500 | 38 |
L 65/30 S | 65 | G13 | 3 | 4400 | 1500 | 38 |
Таблица 2.6.3. Люминесцентные лампы в SA-исполнении, с фольгой для внешнего зажигания
Тип | Мощность, Вт | Цоколь | Цветопередача | Световой поток, лм | Длина l, мм | Диаметр, мм |
L 40/20 SA | 40 | G13 | 2B | 2800 | 1200 | 38 |
L 65/20 SA | 65 | G13 | 2B | 4400 | 1500 | 38 |
2.6.2. Люминесцентные лампы серии LUMILUX DE LUXE (Степень цветопередачи 1А)
Рис. 12. Люминесцентные лампы S и SA исполнения
Рис. 13. Спектральная характеристика ламп серии LUMILUX DE LUXE
Тип | Мощность, Вт | Цоколь | Цветопередача | Световой поток, лм | Длина l, мм | Диаметр, мм |
L 6/32-930 | 6 | G5 | 1A | 220 | 212 | 16 |
L 8/12-950 | 8 | G5 | 1A | 300 | 288 | 16 |
L 8/32-930 | 8 | G5 | 1A | 300 | 288 | 16 |
L 13/32-930 | 13 | G5 | 1A | 600 | 517 | 16 |
L 15/12-950 | 15 | G13 | 1A | 650 | 438 | 26 |
L 15/32-930 | 15 | G13 | 1A | 650 | 438 | 26 |
L 16/32-930 | 16 | G13 | 1A | 850 | 720 | 26 |
L 18/12-950 | 18 | G13 | 1A | 1000 | 590 | 26 |
L 18/22-940 | 18 | G13 | 1A | 1000 | 590 | 26 |
L 18/32-930 | 18 | G13 | 1A | 1000 | 590 | 26 |
L 30/32-930 | 30 | G13 | 1A | 1600 | 895 | 26 |
L 36/12-950 | 36 | G13 | 1A | 2350 | 1200 | 26 |
L 36/12-950-1 | 36 | G13 | 1A | 2100 | 970 | 26 |
L 36/22-940 | 36 | G13 | 1A | 2350 | 1200 | 26 |
L 36/32-930 | 36 | G13 | 1A | 2350 | 1200 | 26 |
L 58/12-950 | 58 | G13 | 1A | 3700 | 1500 | 26 |
L 58/22-940 | 58 | G13 | 1A | 3750 | 1500 | 26 |
L 58/32-930 | 58 | G13 | 1A | 3750 | 1500 | 26 |
2.6.3. Люминесцентные лампы LUMILUX PLUS (Степень цветопередачи 1В)
Рис. 14. Спектральная характеристика ламп LUMILUX PLUS
Тип | Мощность, Вт | Цоколь | Цветопередача | Световой поток, лм | Длина l, мм | Диаметр, мм |
L 10/41-827 PLUS | 10 | G13 | 1B | 650 | 470 | 26 |
L 15/21-840 PLUS | 15 | G13 | 1B | 950 | 438 | 26 |
L 15/31-830 PLUS | 15 | G13 | 1B | 950 | 438 | 26 |
L 15/41-827 PLUS | 15 | G13 | 1B | 950 | 438 | 26 |
L 16/21-840 PLUS | 16 | G13 | 1B | 1250 | 720 | 26 |
L 16/41-827 PLUS | 16 | G13 | 1B | 1250 | 720 | 26 |
L 18/11-860 PLUS | 18 | G13 | 1B | 1350 | 590 | 26 |
L 18/31-830 PLUS | 18 | G13 | 1B | 1350 | 590 | 26 |
L 18/21-840 PLUS | 18 | G13 | 1B | 1350 | 590 | 26 |
L 18/41-827 PLUS | 18 | G13 | 1B | 1350 | 590 | 26 |
L 30/11-860 PLUS | 30 | G13 | 1B | 2250 | 895 | 26 |
L 30/21-840 PLUS | 30 | G13 | 1B | 2350 | 895 | 26 |
L 30/31-830 PLUS | 30 | G13 | 1B | 2350 | 895 | 26 |
L 30/41-827 PLUS | 30 | G13 | 1B | 2350 | 895 | 26 |
L 36/11-860 PLUS | 36 | G13 | 1B | 3250 | 1200 | 26 |
L 36/21-840-1 PLUS | 36 | G13 | 1B | 3000 | 970 | 26 |
L 36/21-840 PLUS | 36 | G13 | 1B | 3350 | 1200 | 26 |
L 36/31-830 PLUS | 36 | G13 | 1B | 3350 | 1200 | 26 |
L 36/41-827 PLUS | 36 | G13 | 1B | 3350 | 1200 | 26 |
L 36/41-827-1 PLUS | 36 | G13 | 1B | 3000 | 970 | 26 |
L 38/21-840 PLUS | 38 | G13 | 1B | 3000 | 1047 | 26 |
L 38/31-830 PLUS | 38 | G13 | 1B | 3000 | 1047 | 26 |
L 58/11-860 PLUS | 58 | G13 | 1B | 5000 | 1500 | 26 |
L 58/21-840 PLUS | 58 | G13 | 1B | 5200 | 1500 | 26 |
L 58/31-830 PLUS | 58 | G13 | 1B | 5200 | 1500 | 26 |
L 58/41-827 PLUS | 58 | G13 | 1B | 5200 | 1500 | 26 |