Способы реализации плавного включения
Прежде чем определиться со способами реализации плавного запуска, необходимо выяснить, как работают УВПЛ. Принцип действия приборов этого типа основывается на способности сначала понижать, а затем постепенно повышать напряжение до оптимальной величины. Устройство подключается в разрыв провода между лампой (светильником) и выключателем.
При подаче напряжения его величина повышается за счет схем плавного запуска. Они могут быть собраны на транзисторах, симисторах или тиристорах по схемам ФИР (фазоимпульсный регулятор). Скорость повышения напряжения может варьироваться в пределах нескольких секунд: многое зависит от того, по какой схеме был собран прибор. Мощность нагрузки чаще всего не превышает 1400 Вт.
Блок питания
Блок защиты выступает в роли устройства, обеспечивающего плавное включение. Применение приспособления одновременно с лампой позволяет постепенно понизить напряжение, поступающее к осветительному прибору. Вольфрамовая нить в этом случае не испытывает большой нагрузки, что позволяет продлить ее срок эксплуатации.
По мере того, как электрический ток проходит сквозь блок, напряжение падает (с 220 В до 170 В). Скорость варьируется в пределах 2-4 секунд. Использование блока защиты по назначению приводит к снижению потока света на 50-60%. Устройства Uniel Upb-200W-BL выдерживают до 220 В, поэтому необходимо подключать к ним лампочки такой же мощности.
Устройство можно устанавливать рядом с выключателями или приборами освещения.
Устройство плавного включения
Механизм действия устройства плавного включения ламп накаливания (УПВЛ) такой же, как и у защитных блоков. Прибор имеет весомое преимущество – небольшой размер, поэтому его можно устанавливать в подрозетник (за выключатель), внутри распределительной коробки и потолочной лампы (под колпак). Подключение УПВЛ должно осуществляться последовательно, начиная с соединения прибора к фазному проводнику.
Диммирование
Диммеры обладают способностью регулировать электрический ток, поэтому эти приборы часто устанавливают в жилых помещениях. Устройства меняют яркость света, который дают галогеновые, светодиодные или лампы накаливания.
Реостат или переменный резистор считают простейшим диммером. Прибор был изобретен в 1847 году Кристианом Поггендорфом. С его помощью можно регулировать силу электрического тока и напряжение. Устройство состоит из нескольких деталей:
- проводник;
- регулятор сопротивления.
Сопротивление меняется плавно. Чтобы уменьшить яркость света, напряжение снижают. В этом случае величины, обозначающие силу тока и сопротивление, будут высокими, что спровоцирует перегрев осветительного прибора.
К диммерам относят также автотрансформаторы. У этих приборов коэффициент полезного действия достаточно высок. Напряжение подается неискаженным, частота оптимальная – не более 50 Гц. Существенный минус автотрансформатора – большой вес. Чтобы управлять ими, человек должен приложить максимум усилий.
Электронный вариант – наиболее простой и доступный прибор, с помощью которого можно контролировать силу тока. Основная деталь компактного устройства – переключатель (ключ), которым управляют тиристорными, симисторными и транзисторными полупроводниками.
Выделяют несколько способов регулирования диммера:
- по переднему фронту;
- по заднему фронту.
Подающееся на лампы накаливания напряжение можно регулировать обоими способами.
Устройство плавного включения ламп накаливания
Резкая подача тока в лампу накаливания, технические характеристики которой рассмотрены ранее, становится причиной быстрого износа – разрыва вольфрамовой нити после очередного ее включения. Банальные перепады температуры – холодная спираль + резкая подача тока – провоцируют разрыв из-за низкого сопротивления холодного вольфрама. Нормализовать температурный режим, медленно и плавно подавая ток, может блок питания.
За долю секунд совершается прогрев спирали за счет частичной подачи тока в лампу, которой достаточно, чтобы разогреть металл для усиления его сопротивления. Медленный, уменьшенный поток напряжения поступает в лампу в течение 3 секунд. Его значение плавно возрастает в этот промежуток времени с минимального значения (от нуля), к примеру, до 176 вольт. Ограничения на подачу мощности устанавливают разные.
Срок службы, которые оборудованы блоком защиты значительно дольше. Они гарантированно прослужат вам максимально установленный производителем срок. Используют также электронный трансформатор для галогенных ламп — с тем же принципом увеличения термина службы.
Важно знать! Существует единственный недостаток блока защиты – поток света от лампы с таким устройством значительно слабеет. В частном случае, где напряжение достигло максимума в 176 В, освещение сократится на 70%
Это большая разница между состояниями «до» и «после». Потому рекомендуют устанавливать максимально мощные лампы, чтобы не пострадать от качества света.
Способы взаимодействия магнитных полей, которые вращают ротор двигателя, различаются в зависимости от типа питающего напряжения. Это и есть главный фактор, влияющий на принцип работы электродвигателя.
При необходимости плавного пуска такого агрегата требуется преобразователь частоты, с рекомендациями по подключению которого можно ознакомиться тут.
Блоки плавного включения имеют разные ограничения на мощность. Потому при покупке лучше удостовериться, что данная модель способна выдержать высокие скачки напряжения. То есть прибор должен иметь предельный запас на 30% больше, чем подает ваша сеть.
Также важно знать общий показатель мощности всех ламп в доме. Диапазон мощности блоков, которые продаются сегодня, от 150 до 1000 ватт
Чем больше данный допустимый показатель, тем больше размеры аппарата. Учитывайте и это, так как вам нужно найти место для установки блока. Стоимость приборов защиты колеблется в пределах 200-400 рублей.
Плавный пуск ламп накаливания
Наверное, многие замечали, что лампа накаливания сгорает в основном при включении. Происходит это потому, что в момент включения холодная нить накала лампы имеет низкое сопротивление, возникает скачок тока превышающий рабочий ток лампы. Именно этот скачок тока губительно влияет на лампу, уменьшая срок её службы. Для того, чтобы продлить и увеличить срок службы лампы, нужно устройство которое в момент включения будет плавно увеличивать ток от минимального до номинального значения. Существуют множество схем и готовых устройств, предлагаю свой вариант устройства для увеличения срока службы ламп накаливания, которое без труда можно собрать самостоятельно.
Схема
Технические характеристики при указанных на схеме номиналах
- Мощность нагрузки: 500Вт*
- Входное рабочее напряжение: ~ 230В
- Выходное напряжение: около ~ 200В
- Время плавного нарастания напряжения от 0 до 200В: около 3 секунд
- Время восстановления после выключения: около 30 секунд*
Заметки
Мощность применённой лампы накаливания будет зависеть от охлаждения симистора, при нагрузке до 150 Вт можно обойтись без радиатора.
В сравнении с устройствами на микроконтроллерах, данный тип устройства имеет основной недостаток в виде необходимости восстановления. Дело в том, что именно время заряда разряженной ёмкости конденсатора C1, задаёт время плавного нарастания напряжения на выходе устройства, а после выключения устройства, время разряда ёмкости конденсатора C1 через R1 составляет примерно 25-30 секунд. На деле получается, если включать/выключать устройство с интервалом меньше 10 секунд, то скорость нарастания напряжения на лампе будет высокая, не будет эффекта плавного включения.
Так же, в момент включения наблюдается нелинейность скорости нарастания напряжения (это не критично и недостатком не является). К примеру, за 1 секунду напряжение поднимается с 0 до 70В, за 0.5 секунд с 70 до 120В , за 1.5 секунды с 120 до 200В .
Настройка и монтаж
Уменьшая сопротивление R1, уменьшается время восстановления устройства, но при этом уменьшается рабочее напряжение на лампе накаливания. При уменьшении сопротивления R2, время плавного нарастания напряжения на лампе уменьшается, при этом рабочее напряжение увеличивается. Так же, увеличением емкости C1 можно увеличить время плавного нарастания напряжения, но время восстановления устройства увеличится. Советую настраивать устройство резистором R2, его нужно подобрать так, чтобы на конденсаторе C1 напряжение было примерно 4,5В.
Обратите внимание, C3 я подпаял навесным монтажом, поскольку не сразу выявил, что он необходим в данном устройстве, при желании его можно легко добавить на плату
Всем удачи! Будьте осторожны с высоким напряжением!
Список радиоэлементов
Обозначение | Тип | Номинал | Количество | Примечание | Магазин | Мой блокнот |
VS1 | Симистор | BT136-600E | 1 | Поиск в магазине Отрон | В блокнот | |
VD1, VD2 | Выпрямительный диод | 1N4148 | 2 | Поиск в магазине Отрон | В блокнот | |
C1 | Электролитический конденсатор | 1000мкФ 6.3В | 1 | Поиск в магазине Отрон | В блокнот | |
C2 | Электролитический конденсатор | 47мкФ 50В | 1 | Поиск в магазине Отрон | В блокнот | |
C3 | Конденсатор | 10-22нФ 630В | 1 | Металлопленочный | Поиск в магазине Отрон | В блокнот |
R1 | Резистор | 22 кОм | 1 | Поиск в магазине Отрон | В блокнот | |
R2 | Резистор | 1.5 кОм | 1 | * | Поиск в магазине Отрон | В блокнот |
R3 | Резистор | 27 кОм | 1 | 0.5Вт | Поиск в магазине Отрон | В блокнот |
Добавить все |
Варианты схем
В магазинах предлагается широкий выбор устройств плавного пуска для ламп от российских и зарубежных производителей. Монтаж не требует особой квалификации. Нужно сделать разрыв провода фазы, ведущего к лампе накаливания, и подключить прибор при помощи клеммников.
При отсутствии клеммников провода спаиваются.
Чаще всего на производствах используется одна из трех схем:
- туристорная;
- симисторная;
- специализированная (обычно микросхема КР1182ПМ1или DIP8).
В сети 220 В
Самая простая схема плавного включения ламп туристорная.
Для самостоятельного изготовления требуются:
- лампа накаливания;
- 4 диода (для создания выпрямительного моста);
- туристор;
- конденсатор (10 мкФ);
- 2 резистора (один из них переменной емкости).
Время включение определяет переменное сопротивление.
В момент включения ток проходит через лампочку, выпрямляется мостом, проходит через резистор и начинает скапливаться в конденсаторе. После достижения определенного порога зарядки ток подается на туристор, он немного открывается. По мере наполнения конденсатора туристор открывается все больше, лампочка постепенно загорается. Максимальная мощность света достигается при полной зарядке конденсатора.
Лампочки накаливания рассчитаны на 220 В (на практике может быть до 240 В). Диоды и туристор выбираются, базируясь на этот показатель. При самостоятельном изготовлении необходимо учесть, что можно использовать любые диоды с напряжением от 300 В и туристор, способный выдерживать мощность от 2 кВт. Емкость накопителя тоже большого значения не имеет
Важно знать, что при ее уменьшении лампочка будет зажигаться быстрее
Использование симистора (попупроводникового ключа) позволяет уменьшить количество элементов в туристорной схеме.
Используется:
- дроссель;
- 2 резистора;
- конденсатор;
- диод;
- симистор.
По принципу действия эта схема мало отличается от предыдущей. Время включения определяет цепочка из резистора и конденсатора, которые подключены через диод. По мере наполнения емкости конденсатора постепенно открывается симистор, через который подпитана лампочка накаливания. Она загорается не мгновенно, а плавно. Такой прибор более удобен в использовании благодаря небольшим размерам.
Плавный пуск ламп при помощи приборов, созданных на основе микросхемы КР1182ПМ1(DIP8), можно использовать с источниками освещения, обладающими мощностью до 150 Ватт.
Основа этого прибора – 2 туристора и 2 системы управления. Время регулируется резистором и конденсатором. Силовую часть от управляющей отделяет симистор, подключенный через задающий ток резистор. Работу внутренних туристоров регулируют 2 наружных конденсатора, от помех, создаваемых сетью, защищает дополнительный конденсатор и резистор.
При использовании этой схемы свет не только плавно включается, но и плавно выключается. Длительность загорания и затухания регулируется подбором емкости конденсаторов.
Плавное включение обладает существенным недостатком – снижением яркости светового потока. Для достижения оптимального уровня освещения требуются лампы с максимальной мощностью.
Для одноклавишных выключателей существует схема на основе транзистора. Когда лампочка накаливания выключена, он закрыт. После включения напряжение через резистор и диод поступает на конденсатор, он начинает заряжаться. Максимальный уровень (9,1 В) ограничивает стабилитрон.
После достижении оптимального напряжения транзистор начинает открываться, нить накаливания лампочки, подключенной последовательно, постепенно нагревается. Обязателен второй резистор у конденсатора, обеспечивающий его разрядку после выключения. Основное преимущество использования транзистора – отсутствие мерцания лампочки накаливания.
При напряжении 12 В
Если светильник точечный, то используется трансформатор, преобразующий 220 вольт в 12 вольт. Для подключения к 12 В устройства плавного пуска он устанавливается перед преобразователем напряжения.
Если такой прибор необходим для автомобиля, требуются специальные схемы – импульсные или линейные (ШИМ-регуляторы).
Линейные подключаются к источникам света параллельно. После включения ток проходит через резистор, лампы тусклые. После подключения реле они загораются на всю мощность.
Резистор должен быть керамический, мощность примерно 5 Вт, сопротивление 0,1-0,5 Ом.
Импульсные схемы создаются на основе полевого транзистора, подающего ток короткими импульсами. За счет этого нити накаливания не нагреваются до уровня, при котором возможен разрыв. В перерывах между импульсами ток успевает равномерно распределиться по нити, выравнивая сопротивление.
Принцип работы
Свечение обычной лампочки накаливания происходит за счет нагрева металла. Вольфрамовая нить при пропускании электрического тока мгновенно раскаляется и начинает светиться. Так как все происходит мгновенно, то нить накаливания меняет свою температуру на сотни градусов за сотые доли секунды, а её сопротивление падает в десятки раз. Это приводит к деградации и перегоранию нити. Если же замедлить процесс нагрева, то можно увеличить срок службы в несколько раз.
Блок питания
Чтобы достичь замедления обычно используют схему с конденсаторами. В момент включения устройства в сеть разряженные конденсаторы будут уменьшать нагрузку на лампочку. Когда конденсатор заряжается полностью, нагрузка растет и лампочка получает полное напряжение. В момент выключения питания конденсаторы начинают разряжаться и поддерживать напряжение, за счет этого нить перестает светиться не мгновенно, а плавно гаснет за несколько секунд.
Уменьшая напряжения и создавая плавное нарастание тока в цепи, устройство позволяет уменьшить деградацию нити. Ударный скачок температуры и тока превращается в плавное повышение температур и небольшое повышение силы тока на большом промежутке времени.
Устройство плавного пуска
Это более сложное устройство для плавного повышения напряжения. Если простейший блок питания состоит из конденсатора, резистора и тиристора, подключенных к сети через диодный мост, то устройство плавного включения более сложное и точнее калибрует нагрузку на лампу.
Принцип работы такой же, как и у обычного блока питания, но с небольшим усложнением схемы устройства. Для большей точности и плавности повышения напряжения используется двойной каскад тиристоров или схема с транзистором и тиристором. Принципиальная схема состоит из двух веток — по одной устанавливается конденсатор с резистором, на второй тиристор или транзистор служащий ключом. Аналогично с блоком питания, при заряде конденсатора происходит полный запуск лампы.
Чаще всего устройство плавного включения выполняется в небольших корпусах и предназначено для скрытого монтажа в плафонах или светильниках. Подключение происходит последовательно с источником освещения. Если лампа накаливания рассчитана на меньший ток, то устройство плавного включения устанавливается до понижающего трансформатора.
Диммирование
Диммирование это в первую очередь изменение силы тока и как следствие этого яркости освещения. Первые диммеры были созданы на базе реостата, сейчас используют полупроводниковые элементы — симистор и динистор. Принцип работы диммера следующий: регулировкой яркости пользователь устанавливает сопротивление потенциометра. Чем больше сопротивление, тем тусклее горит нить накаливания. Основной элемент диммера — это симистор, который служит выключателем. Симистор начинает пропускать ток только, если на его концах определенная разность потенциалов, если она меньше – цепь размыкается. Эту разность потенциалов создает конденсатор заряжающийся от общей цепи.
В целом получается так – конденсатор накопил заряд, выпустил его и создал разность потенциалов. Симистор включается и лампа начинает работать. Когда заряд в конденсаторе заканчивается, разность потенциалов уменьшается и симистор выключается. Этот цикл происходит каждую полуволну переменного тока.
Собственноручное изготовление УПВЛ
Устройства, с помощью которых можно запустить плавное включение, можно изготовить самостоятельно. Для тиристорной схемы в цепь выпрямительного моста включена лампа. Она выполняет роль ограничителя. В плечи выпрямителя сдвигающая цепочка и сам тиристор. Установка диодного моста обязательна.
После того как напряжение было подано на схему, ток, проходя через вольфрамовую спираль и выпрямительный мост, попадает в резистор. Емкость электролита начинает нагреваться. Тиристор открывается и пропускает через себя ток. Вольфрамовая нить плавно нагревается, время нагрева зависит от резистора и конденсатора.
Схема на основе симистора
В схеме плавного включения осветительных приборов симистор выступают в роли силового ключа. Дроссель как основная деталь представляет собой катушку из медных проводков, на сердечник которой намотан магнитопровод. Сила тока в обмотках нарастает постепенно, магнитное поле не способно быстро изменить направление. Симистор (симметричный тиристор) объединяет под корпусом 2 стабилизатора.
В роли ограничителя тока выступает резистор, передающий напряжение на электрический электрод. Цепочка, задающая время, подключена к резистору и емкости электролита. В сравнении с тиристорным прибором симистор имеет несколько недостатков: при работе с индуктивной нагрузкой выбросы напряжения критичны.
Приборы способны быстро переключаться. Надежность устройствам обеспечивает отсутствие механических деталей и контактов. Чтобы увеличить габариты, симистор необходимо соединить с радиатором, чтобы минимизировать степень нагрева электронных ключей. Вентиляторы можно оборудовать дополнительно, они способствуют быстрому охлаждению электронных деталей.
На основе микросхемы
Микросхемы, позволяющие осуществить плавный запуск, были специально разработаны для более быстрого построения регуляторов фазы. Конструкция небольшого размера способна контролировать напряжение, поступающее в лампу (до 150 В). Чтобы увеличить силу тока при наличии нескольких осветительных приборов в одном помещении, к микросхеме подсоединяют симистор.
Приборы можно использовать при плавном запуске не только ламп накаливания, но и галогеновых лампочек. Чтобы продлить срок эксплуатации электроприбора, в них можно установить аналогичные по механизму действия детали.
Внутри большинства микросхем присутствуют детали, отвечающие за усиление сигнала. Нагрузка полностью отключается на нуле. Управляющая цепь замыкается под воздействием конденсатора, который заряжается достаточно быстро. Это позволяет сформировать плавный разгон. Чтобы иметь возможность быстро отключить подачу электроэнергии, целесообразно установить аварийный выключатель.
Схемы плавного включения и выключения светодиодов
Разбирать громоздкие схемы не имеет смысла, т.к. для решения большинства задач справляются простые устройства, работающие на элементарных схемах. Рассмотрим одну из таких схем плавного включения и выключения светодиодов. Несмотря на простоту, она имеет ряд плюсов, высокую надежность и низкую себестоимость.
Состоит из следующих деталей:
- VT1 – полевой транзистор IRF540;
- C1 – конденсатор емкостью 220 mF и напряжением 16V;
- R1, R2, R3 – резисторы номиналом 10, 22, 40 kOm соответственно;
- LED – светодиод.
Работает от напряжения 12 Вольт по следующему алгоритму:
- При включении схемы в цепь питания через R2 протекает ток.
- В это время C1 набирает емкость (заряжается), что обеспечивает постепенное открытие полевика VT
- Возрастающий ток на затворе (вывод 1) протекает через R1, и заставляет постепенно открываться сток полевика VT
- Ток уходит на исток все того же полевика VT1 и далее на LED.
- Светодиод постепенно усиливает излучение света.
Затухание светодиода происходит при снятии питания. Принцип обратный. После отключения питания, конденсатор C1 начинает постепенно отдавать свою емкость на сопротивления R1 и R2.
Главный элемент – это полевой n-канальный MOSFET транзистор IRF540, все остальные полупроводниковые приборы играют вспомогательную роль (обвязка). Стоит отметить его важные характеристики:
- ток стока: до 23 Ампер;
- полярность: n;
- напряжение сток – исток: 100 Вольт.
Более детальную информацию, в том числе и ВАХ, можно найти на сайте производителя в datasheet.
Доработанный вариант с возможностью настройки времени
Рассмотренный выше вариант предполагает использование устройства без возможности регулировки времени розжига и затухания LED. А иногда это необходимо. Для реализации всего лишь нужно дополнить схему несколькими элементами, а именно R4, R5 – регулируемые сопротивления. Они предназначены для реализации функции подстройки времени полного включения и выключения нагрузки.
Рассмотренные схемы плавного розжига и затухания отлично подойдут для реализации дизайнерской подсветки в автомобиле (багажник, двери, область ног передних пассажиров).
Еще одна популярная схема
Вторая самая популярная схема плавного включения и выключения светодиодов очень похожа на две рассмотренные, но сильно отличаются по принципу работы. Управление включением происходит по минусу.
Отличия схемы от рассмотренных ранее. Главное отличие – это другой транзистор. Полевик обязательно нужно заменить на p – канальный (маркировка указана на схеме ниже). Нужно «перевернуть» конденсатор, теперь плюс кондера пойдет на исток транзистора. Не забывайте, доработанный вариант имеет питание с обратной полярностью.
Перспективы использования ламп
Традиционные лампочки, которые запрещены сегодня к использованию во многих странах, могут вернуться на рынок благодаря технологическому прорыву. Лампы накаливания, разработанные Томасом Эдисоном, дают освещение путем нагревания тонкой вольфрамовой нити до температуры 2700 градусов по Цельсию. Эта раскаленная проволока излучает энергию, известную как излучение черного тела, которая представляет очень широкий спектр света, обеспечивает не просто теплый свет, но и максимально точное воспроизведение всех известных цветов мироздания. Однако они всегда страдали от одной серьезной проблемы: более 95 % энергии, которая поступает в них, тратится впустую в виде тепловой энергии.
Теперь исследователи из Массачусетского технологического института и Университета Пердью, нашли способ вернуть их былую популярность и обещают создать новые лампы MIT с эффективностью светодиода. Она будет работать путем размещения нано-зеркал вокруг обычного элемента, которые будут возвращать потраченное впустую тепло обратно для получения света в диапазоне эффективности светодиодных и флуоресцентных светильников.
Элемент лампы окружен системой нано-фотонных зеркал с холодной стороны, которые пропускают видимый свет. Но отражают тепло от инфракрасного излучения. Это тепло затем поглощается ее элементом, заставляя излучать больше света. Этот оригинальный трюк очень простой и жизнеспособный. Вольфрамовый элемент тоже был изменен — MIT использует ленту вместо нити, что лучше для поглощения отраженного тепла. Эксперимент, который выполнили физики Огнин Илик, Марин Сольячич и Джон Джоаннопулос, уже сумел утроить ее эффективность до 6,6 %.
Ученые уверены, что могут достичь 40 % эффективности, которая находится на верхнем пределе возможности для любого источника света. Современные светодиоды пока достигают уровня 15 %.
И если ученые выполнят свои амбициозные обещания — традиционные лампы заслуженно воспрянут из забытья. Тогда плавное включение и выключение света будет обеспечено их конструкцией.
Вывод
Рассмотренные решения являются самыми популярными и востребованными. В сети интернет, на формуах ведутся большие дискуссии по поводу простоты и малой функциональности данных схем, однако практика показала, что в быту их функционала хватает сполна. Большой плюс рассмотренных решений включения и выключения светодиодов – это простота изготовления и низкая себестоимость. Для разработки готового решения уйдет не более 3-7 часов.
Рекомендуем посмотреть:
Плавное включение светодиодной ленты 12 вольт
- Плавное включение светодиодных ламп 220в
- Сигнализатор заряда аккумуляторной батареи
- Плавный розжиг светодиодов простая схема
- Реле задержки времени 12в своими руками
На что можно приклеить светодиодную ленту