Принцип работы солнечной батареи: как устроена и работает солнечная панель

Выбор

Одним из важных критериев выбора являются климатические условия местности, в которой будут установлены гелиопанели. Учитывается количество солнечных дней в году и длина самого дня. Исходя из этих данных, определяется мощность электроэнергии, которую должна вырабатывать батарея в час или сутки. Для северных районов подойдет текстурированное стекло, оно эффективно справляется с работой даже в пасмурные дни. Модули из микроморфного кремния не требуют точной ориентации на солнце, их суммарная годовая мощность превосходит другие тонкопленочные батареи. На них часто останавливают свой выбор жители районов с малой освещенностью.

Выбирая модуль для дома, необходимо продумать, какие электроприборы будут востребованы, хватит ли для них мощности предполагаемой покупки.

При покупке учитывается тип конструкции, материал, толщина фотоэлемента, производитель модуля – все это влияет на цену, качество и длительность работы. Не обязательно переплачивать за иностранные бренды, хорошо себя зарекомендовали модули российского производства, ориентированные на наши климатические условия.

Для расчета количества модулей, следует учитывать, что семья из 4 человек, в среднем, потребляет 200–300 кВт электроэнергии в месяц. Солнечные панели вырабатывают с одного квадратного метра примерно от 25 Вт до 100 Вт в сутки. Для полного удовлетворения дома в потребностях электричества, понадобится 30–40 секций. Оснащение солнечными батареями обойдется семье около 10 тысяч долларов. Устанавливать панели следует на южную сторону крыши, куда попадает максимальное количество солнечных лучей.

Чтобы определиться с выбором, следует понять, какой тип модуля больше подходит покупателю:

  • Монокристаллические фотоэлементы стоят 1,5 доллара за Вт. Они имеют меньшие размеры и более эффективны, чем другие виды подобных батарей. Их общее покрытие занимает меньше места. Учитывая мощность и качество, лучше сделать выбор в их пользу. Единственным минусом является высокая стоимость.
  • Поликристаллические батареи стоят 1,3 доллар за Вт. По мощности они уступают монокристаллическим, но и оцениваются дешевле. Бюджетные возможности привлекают покупателей, к тому же последние разработки подобных батарей сильно приблизили их КПД к монокристаллическим аналогам.

  • Солнечные тонкопленочные панели имеют меньше мощности на один квадратный метр, чем предыдущие модели. Ситуацию выравнивает появление на рынке модулей из микроморфного кремния. Они вырабатывают хорошую суммарную мощность за годовой отрезок времени, отлично себя зарекомендовали в работе видимого и инфракрасного спектра. Для них не важна привязанность к солнечным лучам. Срок эксплуатации батарей составляет 25 лет. Модули имеют недорогую технологию производства, это сказалось на их стоимости – 1,2 доллара за Вт.
  • Большой интерес представляет собой гибридная панель, так как она генерирует тепловую и электрическую энергию. Конструкция соединяет в себе коллектор тепла и элементы фотоэлектрической батареи.

По описанию солнечных батарей видно, что для территорий с малой освещенностью больше подойдут панели микроморфного кремния, южные районы могут воспользоваться поликристаллическими батареями. Для тех, кто не стеснен материально, отличным выбором станут более мощные монокристаллические фотоэлементы.

Сегодня еще остаются претензии к гибким солнечным панелям, но завтрашний день, несомненно, за ними. Их активное усовершенствование приводит к снижению стоимости, они уверенно вытесняют кристаллические аналоги из промышленной и бытовой сферы деятельности человека.

Полимерные и органические батареи

Модули, созданные на основе полимерных и органических материалов, получили своё распространение в последние 10 лет, они создаются в виде плёночных конструкций, толщина которых редко превышает 1 мм. Их КПД близок к 15%, а стоимость в несколько раз ниже кристаллических аналогов.

Преимущества:

  1. Низкая стоимость производства.
  2. Гибкий (рулонный) формат.

Недостатком панелей из этих материалов является снижение эффективности на длительной дистанции. Но этот вопрос ещё исследуется и производство постоянно модернизируется, чтобы исключить минусы, которые могут проявиться в существующем поколении такого вида батарей через 5–10 лет.

Экономическая обоснованность

Они заказывают недорогое оборудование производства КНР на одной из интернет-площадок.

К основным элементам устройства относят: Специальные батареи, которые будут поглощать свет.

Для покупки нужно зарегистрироваться и вписать в поисковую строку нужный запрос. Таким образом, фотоэлементы оказываются зажатыми и так их нужно оставить на полсуток. Оптимальным вариантом является конвектор с выходной мощностью от 3кВт — такое устройство в состоянии обеспечить энергией не только освещение дома или квартиры, но и работы большего числа других потребителей.

Если вам будет интересно, тогда можете прочесть про схему подключения реле напряжения. Шина для спайки солнечных элементов.

Панели между собой соединяются последовательно или параллельно в зависимости от нужного напряжения. Подключите фотоэлемент к контролеру таким же образом.

На схеме ниже вы сможете наглядно увидеть этот процесс. Выбор схемы подключения Энергия, производимая солнечными панелями, не может подаваться напрямую к каким-либо электрическим приборам. При сборке солнечной электростанции следует иметь в виду каждое устройство, даже если конкретное подключение его не касается. Процесс монтажа достаточно понятен и не требует огромных усилий, но многих отталкивает высокая цена системы. Применяя данную схему соединения панелей, мы можем регулировать напряжение и ток на выходе из системы нескольких панелей, что позволит подобрать наиболее оптимальный режим работы всей солнечной электростанции.

Контроллер зарядки АКБ

Среди них широкой популярностью пользуются солнечные системы. Это необслуживаемые и абсолютно безопасные устройства, не выделяющие вредных веществ.

Как рабо­тают сол­неч­ные батареи другими словами

Сол­неч­ная бата­рея рабо­тает сле­ду­ю­щим образом.

  1. Фотоны уда­ря­ются о поверх­ность сол­неч­ной бата­реи и погло­ща­ются её рабо­чим мате­ри­а­лом, напри­мер крем­нием.
  2. Фотоны, стал­ки­ва­ясь с ато­мами веще­ства выби­вают из него его род­ные элек­троны. В резуль­тате чего воз­ни­кает раз­ность потен­ци­а­лов. Сво­бод­ные элек­троны начи­нают дви­гаться внутри веще­ства, чтобы пога­сить раз­ность потен­ци­а­лов. Воз­ни­кает элек­три­че­ский ток. Так как сол­неч­ная бата­рея это полу­про­вод­ник, элек­троны дви­жутся только в одном направ­ле­нии.
  3. Получаемый ток солнечная батарея преобразует в постоянный и отдает его потребителю или аккумулятору.

Технология, по которой изготовлена солнечная батарея, влияет на её КПД 

Считается, что в идеале солнечная батарея имеет близкий к 20 % КПД. Однако на практике и по данным специалистов он примерно равен всего 10 %, при том, что для каких солнечных батарей больше, для каких то меньше. В основном это зависит от технологии, по которой выполнен p-n переход. Самыми ходовыми и имеющими наибольший процент КПД продолжают являться солнечные батареи, изготовленные на основе монокристалла или поликристалла кремния. Причем вторые из-за относительной дешевизны становятся все распространеннее. К какому типу конструкции солнечная батарея относится можно определить невооруженным глазом. 

Монокристаллические светопреобразователи имеют исключительно чёрно-серый цвет, а модели на основе поликристалла кремния выделяет синяя поверхность. Поликристаллические солнечные батареи, изготавливаемые методом литья, оказались более дешевыми в производстве. Однако и у поли- и монокристаллических пластин есть один недостаток — конструкции солнечных батарей на их основе не обладают гибкостью, которая в некоторых случаях не помешает. 

Ситуация меняется с появлением в 1975 году солнечной батареи на основе аморфного кремния, активный элемент которых имеет толщину от 0,5 до 1 мкм, обеспечивая им гибкость. Толщина обычных кремниевых элементов достигает 300 мкм. Однако, несмотря на светопоглощаемость аморфного кремния, которая примерно в 20 раз выше, чем у обычного, эффективность солнечных батарей такого типа, а именно КПД не превышает 12 %. Для моно- и поликристаллических вариантов при всем этом он может достигать 17 % и 15 % соответственно. 

Материал, из которого изготовлены пластины, влияет на характеристики солнечных батарей 

Чистый кремний в производстве пластин для солнечных батарей практически не используется. Чаще всего в качестве примесей для изготовления пластины, вырабатывающей положительный заряд, используется бор, а для отрицательно заряженных пластин мышьяк. Кроме них при производстве солнечных батарей все чаще используются такие компоненты, как арсенид, галлий, медь, кадмий, теллурид, селен и другие. Благодаря ним солнечные батареи становятся менее чувствительными к перепадам окружающих температур. 

В современном мире отдельно от других устройств солнечные батареи используются все реже, чаще представляя собой так называемые системы. Учитывая, что фотоэлектрические элементы вырабатывают электрический ток только при прямом воздействии солнечных лучей или света, ночью или в пасмурный день они становятся практически бесполезными. С системами на солнечных батареях всё иначе. Они оборудованы аккумулятором, способным накапливать электрический ток днем, когда солнечная батарея его вырабатывает, а ночью, накопленный заряд может отдавать потребителям.

Солнечная батарея своими руками

Те, кто хочет сэкономить, задумываются, как сделать солнечную батарею в домашних условиях самостоятельно, чтобы она обладала необходимыми эксплуатационными параметрами и полностью обеспечивала энергетические потребност. Это особенно актуально для мест отдаленных от главных артерий цивилизации.

Солнечные батареи своими руками в домашних условиях изготавливаются из соответствующих элементов, которые можно купить в открытом доступе в специализированных компаниях или через интернет магазины. Если кремниевые пластины должны приобретаться у производителей, то остальные элементы, такие как лента, рамка, пленка, стекло, припой и прочее можно вполне обнаружить и дома в хозяйстве.

Солнечная батарея своими руками из подручных средств изготавливается некоторыми умельцами из медных листов, зажимов, мощных электроплит, соли и из других материалов. Такие кустарные устройства не смогут полностью обеспечить необходимой электроэнергией и могут использоваться лишь в небольших масштабах.

Лучше всего солнечные батареи купить у производителя, поскольку они обладают гарантией и необходимыми функциональными и эксплуатационными параметрами, и, значит, не подведут. Производство солнечных батарей базируется на применении новейших технологий, которые постоянно развиваются, предлагая более усовершенствованные модели. В зависимости от размеров устройств, они могут использовать для различных целей в местах, где нет снабжения электроэнергией. Они встречаются на калькуляторах, часах, различных мобильных устройствах.

Так, например, рюкзак с солнечной батареей будет незаменимым помощником тех, кто любит путешествовать с комфортом. Он накопит достаточно энергии, чтобы зарядить фонарик для освещения туристической палатки или чтобы во время похода заряжать необходимые гаджеты. Судя по отзывам, солнечные батареи используются часто и с удовольствием для удовлетворения разнообразных нужд не только на природе, но и в быту.

Современные устройства со встроенными солнечными модулями

Power bank с солнечной батареей – внешний накопитель с фотоэлементами для преобразования солнечных лучей в заряд аккумулятора. Он обладает несколькими портами и предназначен для зарядки смартфонов или планшетов. Это незаменимое устройство для тех кто, много времени тратят в дороге и пользуются гаджетами. Устройство, зависимо от модели может дополняться различными функциями, как, к примеру, фонариком.

Робот конструктор – наборы с различными элементами, из которых можно собрать несколько конструкций, которые двигаются автономно. Это лучшая игрушка для любознательных детей. Робот конструктор на солнечной батарее купить интересно будет не только малышам, но и вполне взрослым дяденькам, поскольку захватывающим является не только движение робота, но и сам процесс сборки.

Уличные садовые светильники на солнечных батареях – идеальное решение для сада, огорода или приусадебного участка. Благодаря накопленному заряду они будут светиться всю ночь. Для этого не нужно прокладывать специальную проводку. Их можно брать с собой на рыбалку или семейный поход. Чрезвычайная мобильность, компактность и удобство делают фонари самыми востребованными изделиями на солнечных батареях.

Возможности эксплуатации настолько разнообразны, а технологии так быстро развивается, что скоро солнечные модули охватят все сферы жизни современного человека.

Принцип работы солнечных батарей

Солнечные батареи считаются очень эффективным и экологически чистым источником электроэнергии. В последние десятилетия данная технология набирает популярность по всему миру, мотивируя многих людей переходить на дешевую возобновляемую энергию. Задача этого устройства заключается в преобразовании энергии световых лучей в электрический ток, который может использоваться для питания разнообразных бытовых и промышленных устройств.

Правительства многих стран выделяют колоссальные суммы бюджетных средств, спонсируя проекты, которые направлены на разработку солнечных электростанций. Некоторые города полностью используют электроэнергию, полученную от солнца. В России эти устройства часто используются для обеспечения электроэнергией загородных и частных домов в качестве отличной альтернативы услугам централизованного энергоснабжения. Стоит отметить, что принцип работы солнечных батарей для дома достаточно сложный. Далее рассмотрим подробнее, как работают солнечные батареи для дома подробно.

Как было сказано раньше, принцип работы заключается в эффекте полупроводников. Кремний является одним из самых эффективных полупроводников, из известных человечеству на данный момент.

При нагревании фотоэлемента (верхней кремниевой пластины блока преобразователя) электроны из атомов кремния высвобождаются, после чего их захватывают атомы нижней пластины. Согласно законам физики, электроны стремятся вернуться в свое первоначальное положение. Соответственно, с нижней пластины электроны двигаются по проводникам (соединительным проводам), отдавая свою энергию на зарядку аккумуляторов и возвращаясь в верхнюю пластину.

Технические характеристики

Устройство солнечной батареи довольно простое, и состоит из нескольких компонентов:

  • Непосредственно фотоэлементы / солнечная панель;
  • Инвертор, преобразовывающий постоянный ток в переменный;
  • Контроллер уровня заряда аккумулятора.

Аккумуляторы для солнечных батарей купить следует с учетом необходимых функций. Они накапливают и отдают электроэнергию. Запасание и расход происходит в течение всего дня, а ночью накопленный заряд только расходуется. Таким образом, происходит постоянное и непрерывное снабжение энергией.

Чрезмерная зарядка и разрядка батареи укорачивает ее эксплуатационный срок. Контроллер заряда солнечной батареи автоматически приостанавливают накопление энергии в аккумуляторе, когда он достиг максимальных параметров, и отключают нагрузку устройства при сильной разрядке.

(Tesla Powerwall — аккумулятор для солнечных панелей на 7 КВт — и домашняя зарядка для электромобилей)

Сетевой инвертор для солнечных батарей является самым важным элементом конструкции. Он преобразовывает полученную от солнечных лучей энергию в переменный ток различной мощности. Являясь синхронным преобразователем, он совмещает выходное напряжение электрического тока по частоте и фазе со стационарной сетью.

Фотоэлементы могут соединяться как последовательно, так и параллельно. Последний вариант увеличивает параметры мощности, напряжения и тока и позволяет устройству работать, даже если один элемент потеряет функциональность. Комбинированные модели изготовлены с использованием обеих схем. Эксплуатационный срок пластин около 25 лет.

Идеальное излучение

Чтобы решить проблему поглощения светоэлементом всего спектра излучения Солнца, команда исследователей из Хайфа (Израиль) предложили нестандартное решение. В опытах они решили преобразовать солнечный свет в идеальное излучение. Для этого они разработали и применили уникальный фотолюминесцентный материал. Подобная технология используется в светодиодных лампах, где диодное свечение поглощается люминофором и преобразовывается в свечение, оптимальное для восприятия человеком. В случае с элементом, материал преобразует весь спектр излучения в свет, идеально поглощающийся панелью. По утверждению молодых ученых, преобразование света позволит увеличить конверсию в электричество до 50%.

Многослойные панели для установки на крыше

Ранее ученые из университета Нового Южного Уэльса предложили концентрировать излучение Солнца с помощью зеркал. Такая методика позволила значительно увеличить эффективность работы элементов. Сегодня эта технология применяется на множестве СЭС, однако для батарей, устанавливаемых на крышах частных домов, такая конструкция невозможна. Увеличить эффективность преобразования неконцентрированного света до 53% предложили разработчики германского научного центра Agora Energiewende.

В основе их изобретения лежит многослойная панель способная поглощать 4 диапазона света. Специальный преломляющий слой отражает инфракрасный спектр к кремниевой части и пропускает остальной свет к трехслойной панели. Первый слой ‒ индий-галлий-фосфид, второй – индий-галлий-арсенид и третий ‒ германий. Каждый поглощает свет в определенном диапазоне, и в результате получается «выжать» максимум энергии.

Теоретически конструкция идеальна, но на практике для применения на крыше возникли проблемы со сложностью обслуживания. Пока разрабатываемая для частного сектора батарея больше подходит для электростанций, но работы по ее усовершенствованию продолжаются.

Энергия днем и ночью

Особое внимание многих научных изданий привлекли разработки китайских ученых. Это не удивительно, ведь Китай в этой области держит первенство и является крупнейшим поставщиком солнечных панелей, пользующихся спросом по всему миру

Китайские разработчики предложили панель, работающую не только в светлое время суток, но и ночью. Секрет заключается в слое люминофора с длительным послесвечением. Днем непоглощённый фотоэлементом свет задерживается люминофором, который светится ночью, отдавая энергию фотоэлементам. Хотя ночное КПД составляет всего 25%, такие батареи смогут значительно повысить эффективность солнечной энергетики.

Контроллер MPPT или PWM?

Между солнечной панелью и АКБ для контроля уровня заряда батареи и выдачи заданного напряжения устанавливают контроллер.

Ошибка №19
Приобретение малоэффективного PWM или ШИМ контроллера.

Берите только MPPT. Благодаря ему вы сможете “высосать” из солнечной батареи максимум возможного.

PWM наоборот при абсолютно одинаковых условиях ограничивает выдаваемую мощность на 20-30%. Почему так происходит?

Вот самое понятное и наглядное объяснение, что есть в сети.

https://youtube.com/watch?v=-b7TDtjR0S4%3F

Кроме того, через MPPT контроллеры можно спокойно подключать к системе большие сборки солнечных панелей на напряжение 12V-24V.

Объединив их в так называемые “стринги” (последовательно подключенная цепочка), суммарно можно будет передавать с крыши напряжение свыше 100В. Главное, чтобы ваш контроллер был на это рассчитан.

С такой “напругой” потери в проводах снизятся до минимума, а MPPT просто преобразует данное напряжение до необходимого уровня подзарядки АКБ.

Ну а лучшее решение – это комбинированный гибридный инвертор. Он в своей сборке сразу содержит MPPT контроллер и инвертор.

Еще он умеет подключаться параллельно к сети 220В и в автоматическом режиме добавлять недостающие киловатты (функция “подмешивания”). Это когда солнечная станция и батареи не справляются с нагрузкой.

В нормальном режиме источник постоянного тока (АКБ) для него приоритетнее. Из сети он ничего брать не будет.

При этом не путайте, не все гибридные инверторы всеядны и одновременно совместимы с ветрогенераторами. Для одновременной работы СЭС и ветряка нужно подбирать специальные модели.

Солнечная батарея и ветрогенератор

Схемы, в которых соседствуют различные источники энергии, должны строиться на общей характеристике — одинаковое напряжение источников, т.к. иначе потребуются разные контроллеры зарядки и, возможно, инверторы (если разброс по мощности источников большой), а схема блока АКБ позволяет подстраиваться под напряжение источников.

Подключение источника с генератором переменного тока с параметрами сети несколько изменяет схему подключения. На рисунке представлен самый общий вариант без блока подзарядки АКБ (контроллер и трансформатор с выпрямителем, которые отбирают энергию от внешнего источника переменного тока).

Схема подключения усложняется в случае, если автономная система подключена к централизованной сети. В России не отрегулированы ситуации, когда частный потребитель может отдавать излишки энергии в сеть. Кроме этого, переключение не бывает «гладким», т.е. происходит перепад напряжения длительностью 0,3-1 секунды в зависимости от сложности переключателя.

Сложность схемы подключения возрастает с подключением других источников. Вот некоторые вопросы, которые приходится рассматривать при сложной комплектации:

  • Согласование характеристик источников, устройств управления и преобразования энергии,
  • Надежность системы, в сочетании с проблемами утилизации избыточной энергии.

В целом ряде ситуаций могут оказать помощь наши специалисты. Для этого можно использовать сервисы сайта: онлайн-консультант и форму обратной связи.

Альтернативный источник энергии на базе солнечных батарей – отличный вариант для организации независимого энергоснабжения. Он обеспечит высокую энергетическую эффективность не только в знойные деньки, но и в пасмурную погоду. Было бы неплохо иметь такое устройство у себя дома, не так ли?

Для этого нужно лишь грамотно подобрать технические компоненты и произвести монтаж. Сделать это может каждый, зная схемы и способы подключения солнечных батарей. Мы расскажем, как сооружается производительная система, перерабатывающая «зеленую энергию» в электричество, необходимое для питания бытового оборудования.

Кроме того, вы узнаете, как выбрать место для установки гелиопанелей и как совместить их со стационарной электросетью. Полезные советы и важные рекомендации окажут действенную помощь домашним мастерам. Для упрощения восприятия приведены тематические фотографии, схемы и видеоролики.

Планируя выполнить подключение солнечных панелей собственноручно, необходимо иметь представление, из каких элементов состоит система.

Солнечные панели состоят из комплекта , основное предназначение которых – преобразовывать солнечную энергию в электрическую. Сила тока системы зависит от интенсивности света: чем ярче излучения, тем больший ток генерируется.

Помимо солнечного модуля в устройство такой электростанции входят фотоэлектрические преобразователи — контроллер и инвертор, а также подключенные к ним аккумуляторы

Основными конструктивными элементами системы выступают:

  • Солнечная батарея – преобразует солнечный свет в электрическую энергию.
  • Аккумулятор – химический источник тока, который накапливает сгенерированную электроэнергию.
  • Контроллер заряда – следит за напряжением аккумуляторов.
  • Инвертор, преобразующий постоянное электрическое напряжение аккумуляторной батареи в переменное 220В, которое необходимо для функционирования системы освещения и работы бытовой техники.
  • Предохранители, устанавливаемые между всеми элементами системы и защищающие систему от короткого замыкания.
  • Комплект коннекторов стандарта МС4.

Помимо основного предназначения контроллера – следить за напряжением аккумуляторов, устройство по мере необходимости отключает те или иные элементы. Если показатель на клеммах аккумулятора в дневное время достигает отметки в 14 Вольт, что указывает на их перезарядку, контроллер прерывает зарядку.

В ночной период, когда показатель напряжения аккумуляторов достигает предельно низкой отметки в 11 Вольт, контроллер останавливает работу электростанции.

Выводы и полезное видео по теме

Ролик #1. Показ установки солнечных батарей на крышу дома своими руками:

Ролик #2. Выбор аккумуляторных батарей для гелиосистемы, виды, отличия:

Ролик #3. Дачная солнечная электростанция для тех, кто все делает сам:

Рассмотренные пошаговые практические приемы расчетов, основной принцип эффективной работы современной солнечной панельной батареи в составе домашней автономной гелиостанции помогут хозяевам и большого дома густонаселенного района, и дачного домика в глуши обрести энергетическую суверенность.

Хотите поделиться личным опытом, который получили в ходе сооружения мини гелиосистемы или только батареи? Возникли вопросы, на которые хотелось бы получить ответ, нашли недочеты в тексте? Оставляйте, пожалуйста, комментарии в расположенном ниже блоке.

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий