Как устроен и работает светодиод

Как работают светодиоды: принцип действия

Электрический ток преобразуется в свет в кристалле. Он состоит из двух полупроводников различного типа проводимости – n и p. N-проводимость обеспечивается легированием электронов в полупроводник, p – дырок.

Принцип действия светодиода заключается в появлении свечения при рекомбинации электронов и дырок в p-n переходе под действием тока, приложенного в прямом направлении. В результате перехода электронов с одного энергетического уровня на другой появляются фотоны.

Не все полупроводниковые материалы способны давать свет при рекомбинации. Для создания светодиодов используются прямозонные полупроводники, в которых разрешен прямой оптический переход зона-зона. К таким материалам относятся A3B5 (InP, GaAs), A2B4 (CdTe). В зависимости от состава можно получать светодиоды от ультрафиолетовых до инфpaкрасных.

Как работает светодиод, зависит от электронно-дырочного перехода. Условия пропускания света p-n переходом:

  • близость ширины запрещенной зоны к энергии кванта света;
  • минимальное содержание дефектов в полупроводниковом кристалле.

Для реализации этих требований одного p-n перехода недостаточно. Нужно создавать многослойные структуры – гетероструктуры, состоящие из нескольких полупроводников.

Виды и типы светодиодных ламп.

Четкая классификация у светодиодных ламп отсутствует: изделия производятся слишком разных форм, цветов и конфигураций.  

По способу применения:

  1. Источники света общего назначения для освещения квартир и офисов. Характеризуются углом рассеивания от 20 до 360.
  2. Изделия направленного света. Такие лампочки называют спотами. Они используются для создания подсветок или выделения интерьерных зон в комнате.
  3. Изделия линейного типа, схожие с привычными люминесцентными лампами. Изготавливаются в виде трубок. Применяются в технических помещениях, офисах, залах магазинов и в других пространствах, где важна пожарная безопасность. Создают яркую, красивую подсветку, которая подчеркнет необходимые детали.

По назначению светодиодные лампы делятся на:

  1. Изделия для уличного применения. Изготавливаются в пыле- и влагозащищенном корпусе.
  2. Изделия для производственных целей, коммунальных служб. Дополняются антивандальным прочным корпусом. Изготавливаются с особыми требованиями к характеристикам освещения: стабильность, срок службы, условия эксплуатации.
  3. Бытовые лампы. Характеризуются невысокой мощностью, стильным дизайном, электро- и пожаробезопасностью, качеством светового потока (индекс цветопередачи, коэффициент пульсации и др.).

Исходя из потребляемого напряжения тоже выделяют три вида ламп:

  1. С питанием 4 В. Маломощные светодиоды, которые потребляют от одного до 4,5 В. Излучают свет разных длин волн от инфракрасного до ультрафиолетового.
  2. С питанием 12 В. Такое напряжение безопасно для человека, поэтому эти источника света подходят для помещений с повышенной влажностью. Часто выпускаются  со штырьковыми цоколями, что усложняет процесс подключения. Дополнительная трудность может быть в необходимости специального блока питания, который снизит напряжение сети до 12 В. Удобны для использования автолюбителям и туристам: они могут организовать освещение от аккумулятора.
  3. С питанием 220 В. Самый распространенный вид. Широко применяются для бытовых нужд.

Типы цоколей.

Чтобы LED источники света подходили к уже применяемой схеме электроснабжения домов, их оснащают винтовыми цоколями. В качестве альтернативы светильникам галогенного типа выпускают лампы со штырьковыми цоколями. Основные типы представлены в таблице.

Тип цоколя

Назначение

Фото

Е27

Самый распространенный винтовой тип для бытовых источников света.

Е14

Винтовой цоколь для маломощных ламп.

Е40

Винтовой цоколь для мощных источников света ( в основном уличных).

G4

Штырьковые контакты для маленьких лампочек.

GU5.3

Штырьковый контакт для мебельных и потолочных источников света.

GU10

Аналогично GU5.3, но расстояние между контактами составляет 10 мм.

GX53

Штырьковый контакт для плоских светильников.

G13

Контакт, аналогичный люминесцентным трубчатым лампам.

Как устроен вакуумный диод

Назначение

Нагретый катод испускает электроны, достигающие анода. Анод лампы представляет собой круглый или овальный цилиндр, имеющий общую ось с катодом. Схематическое изображение диода показано на рисунке 2 изображен диод с катодом прямого накала. Для получения вольт-амперной характеристики анода можно воспользоваться электрической цепью, приведенной на рисунке 3, где применяется диод с катодом косвенного накала. Вольт-амперная характеристика диода с металлическим катодом рис. При напряжении между катодом и анодом, равном нулю, вылетевшие из катода электроны образуют вокруг него электронное облако пространственный отрицательный заряд , отталкивающее вылетающие из катода электроны.

Понятие вакуума

Большинство электронов возвращается на катод, и лишь незначительное их число достигает анода. С увеличением U a число электронов, достигающих анода, увеличивается и электронное облако постепенно уменьшается.

Когда же все термоэлектроны, вылетающие из катода, попадают на анод, сила анодного тока достигает насыщения I нас на графике рисунка 4 — горизонтальный участок. Это выражение называют формулой Богуславского—Ленгмюра или законом «трех вторых».

Такой ток называют током насыщения.

При постоянной температуре катода сила тока в межэлектродном промежутке зависит от анодного напряжения. Диод пропускает ток только в одном направлении. Это его свойство используется для выпрямления переменного тока.

Диод вакуумный — двухэлектродная электронная лампа условное изображение приведено на. Внутри баллона размещены два электрода: катод к и анод а. При нагревании катода с его поверхности испускаются электроны термоэлектронная эмиссия. При подключении анода к положительному полюсу источника тока, а катода к отрицательному электроны под действием электрического поля движутся от катода к аноду и в диоде возникает электрический ток. По мере увеличения напряжения сила тока в цепи растет, так как все большее количество вылетающих электронов достигает анода.

Ниже приводится подробное описание устройства диода, изучение этих сведений необходимо для дальнейшего понимания принципов действия этих элементов:. Такие особенности внутреннего устройства наделяют диоды их главным свойством — возможностью проведения электрического тока только в одном направлении.

Здесь вы найдете подходящего репетитора быстро, удобно и бесплатно. Мы всегда рады проконсультировать Вас по вопросам образования.

Ниже приводятся основные области применения диодов, на примере которых становится понятно их основное назначение:. На p-n-переход диода может оказывать воздействие напряжение, подаваемое с внешних источников.

Устройство

Такие показатели, как величина и полярность, будут сказываться на его поведении и проводимом через него электрическом токе. Ниже подробно рассмотрен вариант, при котором происходит подключение плюса к области p-типа, а отрицательного полюса к области n-типа. В этом случае произойдет прямое включение:. Теперь будет рассмотрен другой способ включения, во время которого изменяется полярность внешнего источника, от которого происходит передача напряжения:.

Электрический ток в вакууме

Это приводит к росту параметров прямого тока, проходящего через диод. Войти через ВКонтакте Юлия Поделиться. Лариса Поделиться. Запаянная длинная колба с вакуумом, две железяки электроды в концах колбы.

Регистрация Вход. Ответы Mail.

Одна железяка катод подогревается от электроцепи и электроны в ней, не выдерживая нагрева, вылетают из нее и на некотором расстоянии от нее формируют облачко. Если к другой железяке аноду приложить положительное относительно катода напряжение, то электроны из облака рассосутся и побегут к аноду — есть проводимость.

Если сделать напряжение анода отрицательным, то это затолкнет электроны обратно в катод, и никакого тока не потечет.

Вольт-амперная характеристика светодиода.

Она имеет нелинейный характер. Led начинает пропускать ток с определенного значения напряжения. Оно называется пороговым. Пороговый вольтаж определяется химическими соединениями полупроводников.

Вольт-амперная зависимость.

Синяя кривая описывает протекание электричества при прямом включении. Красная кривая — при обратном включении.

UMAXи UMAXОБР – предельно допустимые значения напряжений. При их превышении элемент сгорает.

UMIN – минимальное величина напряжения. Начинается свечение.

Интервал между минимальным и максимальным — рабочая зона. Именно в ней диод светоизлучается.

IMAX – предельное допустимое значение тока. При превышении светодиод перегорает.

Какие цвета может излучать светодиод?

Многие заблуждаются в том, что светодиоды светят тем цветом, в который окрашен их корпус, хотя как мы уже говорили ранее, для регулировки цвета и регулировки его интенсивности нужно подбирать подходящий полупроводниковый материал. Именно он является определяющим фактором, если нужно подобрать цвет. Однако, светодиоды могут излучать не все цвета и есть точный спектр, который получить возможно.

Наиболее распространенные цвета — это красный, желтый, зеленый и оранжевый. Это все потому, что их легче производить, а соответственно и стоят они в разы дешевле ново появившихся синих и белых. Взгляните на эту таблицу, чтобы понять, какому напряжению соответствуют итоговые цвета:


Цвета, которые бывают у светодиодов

Давайте теперь подробно остановимся на конкретных материалах, которые влияют на выбор цвета:

  • арсенид галлия для получения инфракрасного (например, в пульте);
  • фосфид арсенида, чтобы получить оранжевый и весь спектр от красного и до инфракрасного;
  • фосфид арсенида галлия алюминия для ярко-красного, красно-оранжевого и даже желтого;
  • фосфид алюминия-галлия для зеленого;
  • фосфид галлия для желтого, зеленого и красного;
  • нитрид галлия, чтобы получить изумрудно-зеленый;
  • нитрид галлия-индия для бирюзового, синего и ближнего ультрафиолетового;
  • карбид кремния для синего;
  • селенид цинка и опять для синего;
  • нитрид алюминия-галлия для ультрафиолета.

Взглянув на этот список можно заметить, что для некоторых цветов подойдет сразу несколько полупроводников и это действительно так. Это уже сам производитель выбирает, какие полупроводники ему выбрать. Может быть, ему легче достать именно этот тип, а не другой, или он просто дешевле. Да, вот так много разных материалов нужно, чтобы создать даже очень простенький современный телевизор, например.

Достоинства и недостатки светодиодов

Плюсы

  • Высокая механическая и вибрационная стойкость.
  • Небольшой разогрев.
  • Маленькие габаритные размеры, легкий
  • Долговечность.
  • Низкое энергопотребление и мощность.
  • Возможность регулирования интенсивности свечения.
  • Высокие декоративные качества: разнообразие цветов и оттенков свечения.
  • Безынерционность: включаются сразу на полную мощность.
  • Возможность работы при низких температурах.
  • Низкая цена индикаторных светодиодов.
  • Безопасность: низкие рабочие значения напряжения и тока.

Минусы

  • Высокая цена SMD.
  • Ухудшения со временем качества кристалла: чем дольше светодиод работает, тем он тусклее.
  • Повышенные требования к источнику питания.
  • Недопустимы даже небольшие превышения минимальных и максимальных значений электрических параметров.

Производители светодиодов

Монтаж светодиодов.

В рейтинге производителей лидируют несколько фирм с мировым именем. Именно они выпускают самые качественные изделия на рынке.

  1. Philips. Пожалуй, производитель, с самым известным именем. Под этой маркой выпускается множество изделий от лампочек, до телефонов. Фирма имеет заводы более чем в шестидесяти странах. Активно вкладывается в новейшие разработки. Покупает другие, более мелкие заводы и производства, которые изготавливают светодиоды.
  2. Cree. Американская фирма, которая начинала свой путь с производства чипов для телефонов. Специализируется на производстве led-изделий разного назначения. РРаРазработали и выпускают светодиоды из карбида кремния, которые ярко светят.
  3. Nichia. Японская компания. Одна из старейших в области изготовления светодиодной техники. Именно она разработала и внедрила выпуск синих и белых цветов led. Специализируется на производстве кристаллов. Лидер на рынке по доходам от продаж.
  4. Osram. Немецкий изготовитель. Работает более ста лет в паре с Siemens. Выпускает светоизлучающие диоды, которые соответствуют мировым стандартам качества.

Из российских производителей можно отметить «Оптоган» и «Светлана-Оптоэлектроника». Обе фирмы располагаются в Санкт-Петербурге и производят светотехнические изделия. Впрочем, кристаллы для выпуска продукции закупаются за рубежом.

Что такое светодиод простыми словами

Светодиод – это полупроводниковое устройство, создающее излучение при прохождении через него электрического тока. Из чего состоит светодиод: из кристалла, заключенного в защитный корпус с выводами. Кристалл расположен на непроводящей подложке и излучает определенный цвет. Для получения нужного свечения используются химические составы из различных полупроводников и люминофоры.

Кристалл состоит из двух и более полупроводников разного типа проводимости. Принцип работы светодиода следующий – в прямом направлении через него пропускают электрический ток. В электронно-дырочном переходе на границе двух веществ происходит движение электронов и дырок, в результате чего выделяется энергия в виде кванта света и прибор начинает светить.

Преимущества:

  • высокая светоотдача;
  • высокая механическая прочность и виброустойчивость;
  • долгий срок работы;
  • малый нагрев;
  • от количества циклов включения-выключения не зависит срок работы;
  • различный спектр белых светодиодов – от 2700 К до 6500 К;
  • спектральная чистота, полученная благодаря принципу устройства;
  • отсутствует задержка при включении;
  • широкий диапазон углов излучения (от 15 градусов до 180 градусов);
  • электрическая безопасность, так как не требуются высокие напряжения;
  • отсутствие чувствительности к низким температурам;
  • надежность;
  • разнообразие форм;
  • экономичность;
  • экологичность, ввиду отсутствия в конструкции светодиода ртути и других вредных компонентов в составе светоизлучающего диода.

Недостатки:

  • нельзя допускать работы при высоких температурах – кристалл начинает деградировать;
  • высокая стоимость готового изделия.

Применение:

  • уличное, домашнее и производственное освещение;
  • индикация;
  • уличная реклама, бегущие строки;
  • фонари и светофоры;
  • подсветка экранов телефона, телевизора, компьютера и других жидкокристаллических дисплеев;
  • игрушки, значки и другие развлекательные элементы;
  • диодные дорожные знаки;
  • световые шнуры Дюралайт;
  • в фитолампах.

Осветительный прибор на основе светодиодов состоит из:

  • излучающего диода;
  • драйвера;
  • цоколя;
  • корпуса.

Из крупных производителей светодиодов можно выделить японскую фирму Nichia Corporation и ее подразделение Nichia Chemical. Они являются лидерами по изготовлению сверхъярких диодов синего, белого и зеленого цвета. Также изготовлением излучающих диодов занимаются компании Phillips, Cree, Seoul Semiconduction из российских можно выделить Оптоган и Светлана-Оптоэлектроника.

В Nichia Chemical впервые разработали белый и синий светодиод.

Основные хаpaктеристики

Выбирая светодиодные
осветительные приборы важно знать технические и оптические хаpaктеристики:
напряжение, ток, мощность, светоотдачу, температуру свечения, угол рассеивания,
размеры и срок службы

Ток потрeбления светодиода

Стандартный светодиодный кристалл работает на токе 20 мА. Если в чипе несколько кристаллов, эта цифра умножается на 2,3,4. Определить точное значение необходимо при выборе резистора, так как существуют модули, потрeбляющие ток до 1 А.

От величины тока зависит стабильность
работы осветительного прибора. Интенсивность излучения снижается при малейшем
отклонении вниз, одновременно снижается температура света и появляется синий
оттенок в потоке.

Все осветительные приборы подключаются
через резистор, обеспечивающий требуемый уровень тока. При подключении одного
светодиода блок можно заменить резистором. Сопротивление зависит от
хаpaктеристик источника света.

Номинальное напряжение

Напряжение, необходимое кристаллу в SMD
или DIP,
зависит от его цвета и варьирует в пределах 1,8-3,5 В. Самое низкое напряжение
требуется для источников, излучающих желтый и красный цвет (1,8-2,4 В). Для
работы белых, синих и зеленых чипов требуется 3-3,5 В. Сколько вольт требуется
осветительному прибору, зависит от количества чипов. Обычно это 2-12 В для
маломощных изделий и 12-36 В для мощных ламп и прожекторов.

Значение этого параметра особенно важно при параллельном подключении, так как при отклонении всего на 0,1 В ток повышается в 1,5 раз, источник света выходит из строя

Сопротивление

Сопротивление светодиода меняется в
зависимости от типа подключения (величины тока и напряжения).

Согласно закону Ома, сопротивление равно соотношению напряжения к току. Сразу после подключения к источнику питания сопротивление большое, после открытия p-n перехода снижается благодаря снижению напряжения и росту тока. При протекании электротока в обратном направлении сопротивление очень высокое, так как диоды проводят электричество только в одном направлении.

Светоотдача и угол свечения

Светодиод DIP
c диаметром 5 мм излучает
поток в 1-5 лм, мощная лампа – до 350 лм. Свет более яркий в центре,
по краям угла рассеивания яркость снижается. Площадь освещенности увеличивается
при помощи линз. Угол рассеивания зависит от формы диода, варьирует в пределах
20-120 градусов.

Мощность светодиодных ламп

Мощность
светодиода определяется
умножением тока на падение напряжения. Например, для СМД 5050 ток 0,06 А,
падение напряжения для белого кристалла 3,3В, мощность 0,06*3,3 = 0,198 Вт.

При замене лампы накаливания на светодиодную используется простой расчет. Мощность «лампочки Ильича» делится на 8. Например, для замены источника на 100 Вт требуется светодиодный прибор на 100/8 = 12,5 Вт. Но такой расчет подходит только при покупке качественного источника света.

Цветовая температура

Температура обеспечивает комфортность
восприятия света, излучаемого конкретным прибором. В маркировке этот параметр
обозначается как 4 цифры и буква «К».

Цвет светодиодов лампах:

  • 1800
    К (красный) – декоративная подсвета, подсветка растений;
  • 2700-330
    (желтый) – подсветка интерьеров;
  • 30000-3500
    К (теплый белый) – для замены ламп накаливания в жилых и офисных помещениях;
  • 3500-5300
    К (дневной) – для освещения рабочих мест на производстве;
  • От
    5300 (холодный белый) – для уличного освещения;
  • 6000-7000
    К (синий) – подсветка растений.

Размер чипа Led элемента

Измерить светодиод при покупке нельзя,
можно определить количество кристаллов, если нет люминофора. Размеры SMD
указываются в маркировке. Первые 2 цифры – длина чипа, последние – ширина.

Ток определяется не по размеру чипа, а по размеру кристалла.

В квадратных моделях обычные кристаллы 30mil
или 45mil с мощностью 1 или 2 Вт. В диодах с мощность 10-100 Вт кристаллы 24
milх24mil, 24 milх44mil либо 44 milх44mil. В маломощных изделиях может быть
несколько элементов различных размеров, соединенных параллельно или
последовательно.

Виды

Существует несколько разновидностей RGB светодиодов:

  • элементы с общим катодом, которые управляются
    положительными сигналами, подаваемыми на аноды чипов. Такие элементы
    маркируются буквами CA;
  • с общим анодом. Комaнды на изменение режима
    работы идут на катоды элементов. Маркировка CC;
  •  собственной парой контактов для каждого
    кристалла (6 выводов).

Такое разнообразие вариантов создавалось
для облегчения процессов управления группами устройств. Наибольшую
самостоятельность демонстрирует третья группа — с 6 выводами. Единый
стандарт на распиновку
так и не принят, поэтому в каждом случае необходимо определять тип полярности RGB светодиодов.

Каждый чип может получать питание
от собственного источника. Однако, такая система требует большого количества
проводов или токопроводящих дорожек, поэтому подобные компоненты выпускаются в
формате элементов SMD. Помимо
этого, РГБ компоненты выпускаются в корпусах:

  • стандартный круглый вид, оснащенный линзой (для
    приборов малой мощности);
  • корпус «Emitter» для мощных устройств, требующих самостоятельного режима
    работы для каждого чипа;
  • Элементы типа «Пиранья», не нуждающиеся в
    установке теплоотводов.

Пример подключения к Arduino

При подключении адресных светодиодов необходимо определить начало и конец матрицы. На подложку нанесены стрелки, показывающие направление сигнала. Присоединять светильник следует с начальной стороны, откуда стрелки начинают свое движение.

Если планируется включить больше 13 пикселей (а это делается всегда), необходимо приготовить внешний блок питания. Рассмотрим порядок подключения.

Пошаговая инструкция

Порядок подключения адресной ленты ws2812b к микрокомпьютеру Ардуино:

  • цифровой вход Din соединяется через токоограничивающий резистор с контактом –
    6. Номинал резистора находится в диапазоне 100-500 Ом;
  • средний контакт V +5 соединяется с плюсом блока питания;
  • контакт GND соединяется одновременно с одноименным контактом контроллера
    и с минусом блока питания.

Процесс подключения несложен, но
требует внимания, чтобы по ошибке не сделать неправильное соединение контактов.

Библиотеки Ардуино для работы со светодиодной лентой

Управление работой светодиодов производится с помощью соответствующего программного обеспечения. Коды для задания режима для Ардуино пишутся самостоятельно, но некоторые участки кода одинаковы и могут быть заранее скопированы для ускорения и облегчения процесса. Сборники таких заготовок называются библиотеками, их довольно много. Наиболее распространенными считаются 3 библиотеки:

  • FastLED;
  • AdafruitNeoPixel;
  • LightWS2812.

Причины проблем при работе с адресной светодиодная лентой

Причинами возникших неполадок в работе адресной конструкции могут быть:

  • некачественный контакт с землей;
  • сигнальный провод подключен не к начальному
    контакту;
  • перепyтaны «+» и «-» питания ленты;
  • при явном преобладании красного цвета возможны
    неполадки блока питания, слишком тонкие соединительные дорожки или плохое
    качество пайки контактов;
  • при подключении без резистора контакт на Ардуино
    может выйти из строя.

Основной причиной неполадок можно
назвать невнимательность, отсутствие сосредоточенности и тщательности при
подключении светодиодов.

Назначение

Ниже приводятся основные области применения диодов, на примере которых становится понятно их основное назначение:

  1. Диодные мосты представляют собой 4, 6 или 12 диодов, соединенных между собой, их количество зависит от типа схемы, которая может быть однофазной, трехфазной полумостовой или трехфазной полномостовой. Они выполняют функции выпрямителей, такой вариант чаще всего используется в автомобильных генераторах, поскольку внедрение подобных мостов, а также использование вместе с ними щеточно-коллекторных узлов, позволило в значительной степени сократить размеры данного устройства и увеличить степень его надежности. Если соединение выполнено последовательно и в одну сторону, то это повышает минимальные показатели напряжения, которое потребуется для отпирания всего диодного моста.
  2. Диодные детекторы получаются при комбинированном использовании данных приборов с конденсаторами. Это необходимо для того, чтобы было можно выделить модуляцию с низкими частотами из различных модулированных сигналов, в том числе амплитудно-модулированной разновидности радиосигнала. Такие детекторы являются частью конструкции многих бытовых потребителей, например, телевизоров или радиоприемников.
  3. Обеспечение защиты потребителей от неверной полярности при включении схемных входов от возникающих перегрузок или ключей от пробоя электродвижущей силой, возникающей при самоиндукции, которая происходит при отключении индуктивной нагрузки. Для обеспечения безопасности схем от возникающих перегрузок, применяется цепочка, состоящая из нескольких диодов, имеющих подключение к питающим шинам в обратном направлении. При этом, вход, которому обеспечивается защита, должен подключаться к середине этой цепочки. Во время обычного функционирования схемы, все диоды находятся в закрытом состоянии, но если ими было зафиксировано, что потенциал входа ушел за допустимые пределы напряжения, происходит активация одного из защитных элементов. Благодаря этому, данный допустимый потенциал получает ограничение в рамках допустимого питающего напряжения в сумме с прямым падением показателей напряжение на защитном приборе.
  4. Переключатели, созданные на основе диодов, используются для осуществления коммутации сигналов с высокими частотами. Управление такой системой осуществляется при помощи постоянного электрического тока, разделения высоких частот и подачи управляющего сигнала, которое происходит благодаря индуктивности и конденсаторам.
  5. Создание диодной искрозащиты. Используются шунт-диодные барьеры, которые обеспечивают безопасность путем ограничения напряжения в соответствующей электрической цепи. В совокупности с ними применяются токоограничительные резисторы, которые необходимы для ограничения показателей электрического тока, проходящего через сеть, и увеличения степени защиты.

Использование диодов в электронике на сегодняшний день весьма широко, поскольку фактически ни одна современная разновидность электронного оборудования не обходится без этих элементов.

Подключение светодиода.

Самым простым случаем подключения светодиода является подключение с резистором. Последний необходим для токоограничения, чтобы исключить перегорание led при скачках напряжения.

При подключении led-элементов по любой схеме не забывайте придерживаться полярности! Иначе полупроводниковый прибор не будет светить и перегорит.

Электрическая схема соединения светодиода (LED) и резистора (R).

При соединении нескольких светоизлучающих диодов возможны разные варианты их соединения.

Последовательное подключение.

Схема последовательного соединения.

Элементы соединяются последовательно с учетом полярности. В цепи значение тока постоянно, а напряжение на led-элементах суммируется.

Параллельное соединение.

Схема параллельного соединения светодиодов через один резистор.

В этом случае постоянным в цепи сохраняется напряжение, а силы тока на элементах складываются. У данного типа соединения есть недостаток. На разных светодиодах может быть неодинаковое падение напряжения. Поэтому ток на каком-нибудь элементе может превысить допустимый, что приведет к поломке.

Во избежание этого следует подключать к каждой параллельной цепи свой резистор.

Схема параллельного подключения.

Параллельно-последовательное соединение.

При подключении большого количества светодиодов стоит использовать параллельно-последовательную электрическую схему. При этом в параллельных ветках напряжение одинаковое.

Электрическая схема параллельно-последовательного соединения.

Разновидности светодиодов

Последовательное совершенствование открытой в 1962 году технологии привело к созданию разнообразных базовых элементов и моделей светодиодов на их основе. На сегодняшний день классификация проводится по расчётной мощности, типу соединения и типу корпуса.

В первом случае различаются осветительные и индикаторные варианты. Первые предназначены для использования в осветительных целях. Их уровень мощности приблизительно соответствует аналогичным вольфрамовым и люминесцентным лампам. Индикаторные светодиоды не излучают сильный поток света и используются в электронном оборудовании, приборных и навигационных панелях и т.д.

Индикаторные светодиоды между собой различают по типу соединения на тройные AlGaAs, тройные GaAsP и двойные GaP. Аббревиатуры, соответственно, означают алюминий-галлий-мышьяк, галлий-мышьяк-фосфор и галлий-фосфор. AlGaAs светят жёлтым и оранжевым в пределах видимого спектра, GaAsP- красным и жёло-зелёным, а GaP – зелёным и оранжевым.

По типу корпуса представленные в широком применении светодиодные светильники сейчас делятся на:

  • DIP. Это старый форм-фактор из линзы, пары контактов и кристалла. Такие светодиоды применяются в световых табло и игрушках для подсветки;
  • «Пиранья» или Superflux. Это доработанная модель DIP, которая имеет не два, а четыре контакта. Выделяет меньше тепловой энергии и, соответственно, меньше греется. Сейчас применяется в автомобильной подсветке;
  • SMD. Самая популярная технология на современном рынке LED-светильников. Это универсальный чип, монтаж которого был произведён непосредственно на плате. Используется в большинстве источников света, осветительных линий, лент и т.п;
  • COB. Это результат совершенствования технологии SMD. У таких светодиодов есть несколько чипов, монтированных на одной плате на алюминиевом или керамическом основании.

Цветовая температура

Данная характеристика выведена по аналогии цветовосприятия разогреваемого металла. Численные пределы размещены в рамках от 800 до 7500 и измеряются в Кельвинах (К). Наиболее низким показателем обладает красный свет – около 800 К, соответственно, наиболее высокий – у холодного синего.

Для освещения применяется белый свет. Цветные светодиоды в основном используются в декоративных и индикационных целях. Белый цвет по критериям цветовой температуры разделяется на три подкатегории:

  1. Теплый – 2700 – 3500 К.
  2. Нейтральный – 3500 – 5300 К (наиболее сбалансированный для восприятия).
  3. Холодный – 5300 – 7500 К.

Основные выводы

Сравнение технологий LCD и LED применительно к конструкции жидкокристаллических дисплеев является некорректным и неграмотным действием. Правильнее говорить о разном типе подсветки матрицы. Учитывая, что использование люминесцентных ламп фактически подошло к концу, актуальность таких сравнений также исчезает. Основным методом подачи света становятся LED-приборы, обеспечивающие высокое качество и эффективность работы дисплея.

ПредыдущаяСветодиодыДинамическая подсветка монитора: хаpaктеристика, схема, настройкаСледующаяСветодиодыХаpaктеристики и основные отличия подсветки WLED

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий