Расчет контура заземления

Компоненты защиты

Защитное заземление включает электроды, установленные в землю и соединенные электросвязью с заземляющей шиной.

В системе имеются такие элементы:

  1. Металлические стержни. Один или несколько металлических стержней направляют ток растекания в грунт. Обычно в качестве электродов используют отрезки длинномерного металла (трубы, уголок, круглые металлические изделия). В некоторых случаях используется листовая сталь.
  2. Металлический проводник, объединяющий несколько заземлителей в единую систему. Обычно в этом качестве используют установленный по горизонтали проводник в виде уголка, прута или полосы. Металлическую связь приваривают к концам закопанных в землю электродов.
  3. Проводник, соединяющий находящийся в грунте заземлитель с шиной, которая имеет связь с защищаемым оборудованием.

Два последних элемента называются одинаково — заземляющий проводник. Оба элемента выполняют идентичную функцию. Различие кроется в том, что металлосвязь находится в грунте, а проводник подключения заземления к шине располагается на поверхности. В связи с этим к проводникам предъявляются неодинаковые требования по устойчивости к коррозии.

Материалы для заземлителей

Контур заземления включает горизонтальные или вертикальные электроды.

Материалы, из которых не рекомендуется изготавливать заземлители:

  • рифленая арматура;
  • круглая сталь менее чем 10-миллиметрового диаметра.

Рекомендуемые материалы для создания вертикальных заземлителей:

  • уголки 50×50×5 миллиметров;
  • трубы диаметром свыше 32 миллиметров со стенками толщиной от 3,5 миллиметра.

Горизонтальные заземлители изготавливают из таких материалов:

  • стальная проволока с 10-миллиметровым сечением (или больше);
  • стальные полоски (40×4 миллиметра).

Концы уголков или круглых металлических изделий подрезают под углом 30 градусов. Это позволит электроду легче войти в грунт.

Классический способ измерения сопротивления заземления

Схема установки для измерения сопротивления растеканию электрического тока. 

Классический способ измерения сопротивления растеканию (Рис. 1) состоит в измерении напряжения и тока в соответствии со схемой (метод вольтметра — амперметра). Пользуясь формулами закона Ома: R = U / I, мы можем определить сопротивление заземления электрода R. Например, если напряжение равно 10 В и ток равен 1 А, то R = U / I = 10 / 1 = 10 Ом. Измерительная система состоит из источника переменного тока, амперметра, вольтметра и двух металлических электродов, забиваемых в землю. Недостатки подобного метода — невысокая точность вследствие наличия в земле различных коммуникаций, большая трудоёмкость, сложность проведения измерений в зимнее время.

Глубина электрода заземленияX — Y (м)X — Z (м)
21422
2.51525
31727
41930
52134
62337
92643

Что важно знать

Заземление дома необходимо для того чтобы снизить напряжение соприкосновения до неопасного показателя. Благодаря ему потенциал направляется в землю и защищает человека от поражения электрическим током. В ПУЭ (Глава 1.7, п. 1.7.62.) указывается, что частный дом должен иметь сопротивление растекания при трехфазном питании 4 и 8 Ом (первое значение при 380 В, второе – 220 В), а при однофазном – 2 и 4 Ом.

Количество заземлителей необходимо выбрать таким образом, чтобы обеспечить нормативное сопротивление растеканию электрического тока. Чем меньше сопротивление — тем лучше, таким образом обеспечивается эффективность действия заземляющего устройства при выполнении функций защиты от действия электрического тока.

Электроды изготавливаются из меди, оцинкованной и черной стали. Профили сечения указаны на рисунке ниже:

От чего зависит сопротивление заземления

Как уже говорилось выше, у тока есть одна важная особенность — он течет по тому участку цепи, который меньше всего этому сопротивляется. Сама величина сопротивления зависит от множества факторов:

  1. Материала. Ряд материалов имеет особую (атомарную) структуру, которая подразумевает наличие большого числа свободных электронов. Если такие материалы попадают в действие любого магнитного поля или покдлючаются к источнику питания, то легко проводят электрический ток. В своем большинстве это утверждение относится к металлам. Другие материалы не имеют свободных электронов и их сопротивление току крайне высоко. Если напряжение (сила, «толкающая» электроны) ниже допустимого значения, то проводимость будет равняться нулю или крайне малым значениям. При превышении показателя произойдет пробой и образовавшийся нагар будет иметь свойства проводника. Логично, что материалом для заземления могут быть именно только представители первой группы материалов — именно она обеспечивает минимальное сопротивление.
  2. Его температуры. Темпатура определяет, насколько быстро электроны передвигаются внутри материала. Следовательно, чем ниже она у проводника, тем лучше он проводит заряд. Обратная зависимость тоже носит характер прямой пропорции — после ее повышения его сопротивление будет падать. Расчет сопротивления заземления должен производиться с учетом этого параметра.
  3. Наличия примесей. Основная часть проводников делается из меди. Старые провода изготавливаливались из алюминия, но такие решения имеют сразу несколько недостатков. К сожалению, кабеля и провода из этого материала быстрее перегреваются и плавятся, да и сопротивление промышленно добываемого алюминия ниже, чем таковое у меди. Химически чистый же металл является лучшим проводником, превосходя по проводимости даже серебро. Дело в примесях: они имеют гораздо более высокие показатели сопротивления. Этот же момент стоит учитывать при расчете заземления.

Понятное дело, что в идеале сопротивление должно быть минимальным — для этого нужно использовать медный контур большого сечения. Но дело в том, что медь быстро окисляется, да и стоимость такого решения будет крайне высокой. Следовательно, были разработаны нормы для минимального порога заземления. Этот показатель не нужно превышать для того, чтобы в нужный момент под нагрузкой контур выполнил возложенную на него функцию и отвел заряд в землю.

Формула расчёта одиночного заземлителя

Расчет систем вентиляции Существует ряд факторов, влияющих на окончательный результат расчёта заземляющей конструкции, а именно:

  • Используемые материалы (решающие значение имеет вид металла, но немаловажным могут быть и показатели электролита);
  • Форма элементов-электродов (влияет незначительно);
  • Расстояние между элементами электродами;
  • Глубина, на которую погружается монтируемый контур.

Необходимо отметить, что для получения системы, имеющий сопротивление в 4–8 Ом, применяемые металлические элементы должны обладать определёнными минимальными параметрами:

  • Плоская балка — 12 мм в ширину, 4 мм в высоту;
  • Уголок — 4 мм в высоту
  • Шест — диаметр не менее 10 мм;
  • Труба — толщина не менее 3.5 мм.

Расчёт защитного заземления можно провести при помощи специализированного программного обеспечения или онлайн-калькуляторов. Но для их правильного использования необходимо знать общую формулу, по которой проводятся вычисления и значение всех переменных. Традиционно в рассматриваемой формуле используются следующие обозначения:

  • R — расчётное заземление (Ом);
  • L — протяжённость заземляющего элемента-заземлителя (м);
  • d — диаметр элемента (м);
  • T — заглубление: расстояние между от середины каждого заземляющего элемента до поверхности грунта (м);
  • ρ — сопротивление грунта (Ом×м). Смотрите таблицу.
  • π — число Пи (3.14)

Расчёт такого типа контура заземления производится по такой формуле:

Измерить все перечисленные значения не составить большой трудности, за исключением разве что параметра ρ. Произвести эту процедуру можно самостоятельно при помощи Омметра, но нужно понимать, что полученные данные могут существенно изменяться при изменении температуры, влажности и других параметров окружающей среды. Поэтому гораздо удобнее будет воспользоваться усреднёнными табличными данными:

Тип грунтаПараметр сопротивление грунта в диапазоне от –5 до –20°С
Песок5000–11000
Супесь1100–1500
Влажная глина550–3000
Каменистая глина1000–12000
Известняк3000–12500
Торф500–1000
Суглинок1200–3500

Глина, суглинок, супесь (различия)

Рыхлые осадочные грунты, состоящие из глины и песка, классифицируются по содержанию в них глинистых частиц:

глина — более 30%. Глина очень пластичная, хорошо скатывается в шнур (между ладонями). Скатанный из глины шар сдавливается в лепешку без образования трещин по краям.

  • тяжелая — более 60%
  • обычная — от 30 до 60% с преобладанием глинистых частиц
  • пылеватая — от 30 до 60% с преобладанием песка
Тип грунтаОм*м
Разнообразные смеси глины и песка150
Суглинок лесовидный100
Глина полутвёрдая60
Сланцы глинистые55
Суглинок пластичный30
Глина пластичная20
Подземные водоносные слои5
  • суглинок — от 10% до 30% глины. Этот грунт достаточно пластичен, при растирании его между пальцами не чувствуются отдельные песчинки. Скатанный из суглинка шар раздавливается в лепешку с образованием трещин по краям.
  • тяжелый — от 20 до 30%
  • средний — от 15 до 20%
  • легкий — от 10 до 15%
  • супесь (супесок) — менее 10% глины. Является переходной формой от глинистых к песчаным грунтам. Супесь наименее пластичная из всех глинистых грунтов; при ее растирании между пальцами чувствуются песчинки; она плохо скатывается в шнур. Скатанный из супеси шар рассыпается при сдавливании.

Как проверить качество смонтированного контура заземления

Первый способ самый точный и действенный, но он не позволяет устранить неисправности и часто приводит к печальным последствиям при наличии ошибок. На практике применяют второй метод: привлечение специалистов подготовленных электрических подразделений.

Для лучшего освоения методов расчёта заземления лучше рассмотреть пример, а лучше – несколько.

Заземлители часто делают своими руками из стального уголка 50х50 мм длиной 2,5 м. Расстояние между ними выбирается равным длине – h=2.5м. Для глинистого грунта ρ = 60 Ом∙м. Коэффициент сезонности для средней полосы, выбранный по таблицам, равен 1,45. С его учётом ρ = 60∙1,45 = 87 Ом∙м.

Для заземления по контуру роется траншея глубиной 0,5 м и в дно забивается уголок.

d = 0.95∙p = 0.995∙0.05 = 87 Ом∙м.

h = 0,5l t = 0.5∙2.5 0.5 = 1.75 м.

По приближенной формуле R = 0.3∙87 = 26.1 Ом. Из расчёта следует, что одного стержня будет явно недостаточно, поскольку по требованиям ПУЭ величина нормированного сопротивления составляет Rнорм = 4 Ом (для напряжения сети 220 В).

Здесь вначале принимается kисп = 1. По таблицам находим для 7 заземлителей kисп = 0,59. Если подставить это значение в предыдущую формулу и снова пересчитать, получится количество электродов n = 12 шт. Затем производится новый перерасчёт для 12 электродов, где опять по таблице находится kисп = 0,54.

Таким образом, для 13 уголков Rn = Rз/(n*η) = 27,58/(13∙0,53) = 4 Ом.

Нужно изготовить искусственное заземление с сопротивлением Rнорм = 4 Ом, если ρ = 110 Ом∙м.

Заземлитель изготавливается из стержней диаметром 12 мм и длиной 5 м. Коэффициент сезонности по таблице равен 1,35. Ещё можно учесть состояние грунта kг. Измерения его сопротивления производились в засушливый период. Поэтому коэффициент составил kг =0,95.

Предлагаем ознакомиться Установка дымохода сэндвич своими руками: как сделать правильно, правила монтажа

ρ = 1,35∙0,95∙110 = 141 Ом∙м.

Электроды располагаются в ряд. Расстояние между ними должно быть не меньше длины. Тогда коэффициент использования составит по таблицам: kисп = 0,56.

После монтажа заземления производятся измерения электрических параметров на месте. Если фактическое значение R получается выше, ещё добавляются электроды.

Если рядом находятся естественные заземлители, их можно использовать.

Особенно часто это делается на подстанции, где требуется самая низкая величина R. Оборудование здесь используется максимально: подземные трубопроводы, опоры линий электропередач и др. Если этого недостаточно, добавляется искусственное заземление.

Естественное заземление на даче через арматуру фундамента

Любой приведённый пример можно использовать как алгоритм расчёта. При этом для оценки правильности может быть применена онлайн-программа.

Как выглядит онлайн-программа, с помощью которой можно рассчитать заземление

Самостоятельные расчёты заземления являются оценочными. После его монтажа следует произвести дополнительные электрические измерения, для чего приглашаются специалисты. Если грунт сухой, нужно использовать длинные электроды из-за плохой проводимости. Во влажном грунте поперечное сечение электродов следует брать как можно больше по причине повышенной коррозии.

Нормативные документы, регламентирующие сопротивление заземления

Сопротивление заземления нормируется рядом нормативных документов. Выделим основные положения:

  • ПУЭ 7 (п.1.7.101): Для трехфазного напряжения 380 В или однофазного 220 В, сопротивление заземляющего устройства, к которому присоединены нейтрали трансформатора (вместе со всеми естественными заземлителями и повторными заземлителями на отходящих линиях, если линий не менее двух) должно быть не более 4 Ом. При тех же напряжениях, сопротивление заземлителя, расположенного в непосредственной близости от нейтрали трансформатора должно быть не более 30 Ом. (п.1.7.103): Общее сопротивление всех повторных заземлений каждой линии трёхфазного напряжения 380 В или однофазного 220 В должно быть не более 10 Ом. Сопротивление заземлителя каждого из повторных заземлений этих линий должно быть не более 30 Ом.
  • ПТЭЭП, приложение 3.1, таблица 36: Сопротивление заземляющего устройства при трехфазном напряжении 380 В или однофазном 220 В должно быть не более 30 Ом.
  • Технический циркуляр № 31/2012: При питании от ВЛИ (воздушная линия электропередачи напряжением до 1 кВ с применением самонесущих изолированных проводов СИП) сопротивление повторного заземления у потребителя выбирается из условия обеспечения надежного срабатывания УЗО при повреждении изоляции (однофазное замыкание на землю) при отключенном PEN проводнике ответвления от ВЛИ. Сопротивление рассчитывается по току надежного срабатывания УЗО, равному 5 IΔn, но должно быть не более 30 Ом. При удельном сопротивлении грунта более 300 Ом×м допускается увеличение сопротивления до 150 Ом.

Переходя от системы TN к TT, когда здание имеет собственное заземление, никак не соединенное с заземленной нейтралью трансформатора, нужно руководствоваться пунктом 1.7.59 ПУЭ 7. В нем говорится, что требования к такому заземлению ниже, поскольку в этом случае в здании обязательна установка УЗО. Заземление должно иметь сопротивление, которое при утечке 50 В гарантированно даст ток выше тока срабатывания этого УЗО. Однако технический циркуляр № 31/2012 уточняет, что в случае схемы ТТ параметры повторного заземления выбираются такими же, как и для схемы TN — не более 30 Ом.

Измерение мультиметром

Этот универсальный прибор, если все делать по стандартной, официально утвержденной методике, для таких целей, как отмечено, не подходит. Мультиметр на практике используется лишь для примерной оценки состояния заземления, выявления явных обрывов, то есть отсутствия надежного контакта соответствующего проводника с грунтом. Как это правильно делать описано здесь.

Почему данный тип измерительного прибора применяется лишь в редких случаях?

  • Большая погрешность измерений не дает истинного представления о реальном значении сопротивления.
  • Стандартная (рекомендуемая) методика не может быть применена, так как согласно ей прибор должен подключаться к 4-м точкам, к тому же разнесенным территориально. С мультиметром это сделать невозможно.
  • Официального заключения по результатам измерений таким прибором (задокументированного) не выдаст ни один специалист. Причина вполне объяснима – в нормативных актах использование мультиметра при проверке заземления не предусмотрено.

Тем не менее, есть ситуации, когда без мультиметра не обойтись. Например, на территории с довольно плотной застройкой. Это не позволяет производить измерения на больших расстояниях от здания. А согласно методике, оно должно быть в пределах 30±10 м. Подробнее, как измерить сопротивление с помощью мультиметра можно из видео:

Как подготовить мультиметр

Задача любого измерения – добиться максимальной точности показаний. Что необходимо проделать:

  • подобрать «хороший» мультиметр (у друзей, соседей и так далее). Какой лучше выбрать для различных целей описывали вот в этой статье. Подразумевается достаточно новый, а не выпущенный десятилетия тому назад, неповрежденный, с максимально возможным классом точности для этого типа приборов;
  • заменить элемент питания. Старая батарейка, частично разряженная, только увеличит погрешность измерения;
  • произвести калибровку (если она предусмотрена для конкретной модели).

Как подготовить рабочее место

Даже если вспомогательный электрод изначально при организации заземления и был установлен, то его еще нужно найти. Тем более, если дом построен много лет назад, и территория вокруг него уже несколько раз подвергалась перепланировке, обустройству и так далее. Следовательно, его «дубликат» необходимо поставить самостоятельно.

Для измерения сопротивления подойдет любой металлический штырь (то же арматурный пруток) сечением порядка 5 мм, который вгоняется в землю минимум на 1,5 м на расстоянии 7,5±2,5 от основного. Его найти намного проще, тем более что место расположения должно быть помечено (знаком, символом на стене дома). Хотя несложно определить и визуально – к нему часто тянется по-над поверхностью металлическая проволока (шестерка или восьмерка).

Где измерять сопротивление

Между основным штырем заземления и вновь установленным (дополнительным). Схема показана на рисунке.

Результат замеров позволяет понять, насколько отвечает стержень заземления тем требованиям, которые к нему предъявляются. По сути, измеряется суммарное сопротивление его и грунта. Дело в том, что большая его часть заглублена. В процессе длительной эксплуатации металл подвергается коррозии.

  • Предварительно определяется сопротивление дополнительного стержня. Его значение при оценке результата не учитывается.
  • Величина R заземления должна быть Измерение мегаомметром

Принцип измерений тот же самый. Отличия лишь в некоторых моментах.

Для получения максимально точных показаний прибор необходимо установить в строго горизонтальной плоскости. Перекос ни по одной из осей не допускается.

Подготовка мегаомметра (измеритель сопротивления заземления) сводится к его проверке на пригодность к измерениям. Сделать это достаточно просто (пример – модель М416).

  • Переключатель – в «Контроль».
  • Нажимается кнопка и производится вращение рукоятки. Стрелка должна встать на отметке 5 (±0,3). Если показание иное, прибор отбраковывается.

Как правильно подключать к клеммам измеритель сопротивления заземления провода в зависимости от схемы измерения, показано на его корпусе.

Методик измерения сопротивления заземления довольно много. Они предполагают использование различных приборов, схем, и оптимальное решение принимается для конкретного контура индивидуально. Но для самостоятельной диагностики его состояния в домашних условиях достаточно и двух описанных выше.

Если же есть сомнения в правильности определения результатов, большой погрешности и так далее, следует обратиться к профессионалам. К заземлению, учитывая, что оно – составная часть схемы эн/снабжения, пренебрежительно относиться не стоит.

Это интересно: Подключение УЗО к однофазной сети с заземлением: правила + этапы работ

Цель расчета защитного заземления

Обустраиваемое на стороне потребителя заземляющее устройство предназначено для защиты не только персонала, обслуживающего электроустановки, но и рядовых пользователей.

Полноценный расчет заземления гарантирует образование надежного контакта защитного устройства с землей, приводящего к растеканию тока и снижению уровня опасного напряжения.

Таким образом, назначение расчета заземляющих устройств – создание условий, исключающих риск поражения живых организмов высоким потенциалом путем его снижения в точке замыкания. В отсутствие хорошо просчитанного и функционального заземлителя любое прикосновение к корпусу поврежденного оборудования равнозначно прямому контакту с фазной жилой.

Расчёт сопротивления

Правильный расчёт защитного заземления заключается в точном определении сопротивления растекания тока (Rз), которое зависит от множества факторов (влажности и плотности грунта, количества солей, конструктивных особенностей заземлительного устройства, диаметра и глубины погружения подключённого провода и др.).

Их снижение достигается путём уменьшения сопротивления растекания тока. Результатом такого снижения является уменьшение тока, проходящего сквозь тело человека при аварии.

В процессе расчёта заземления необходимо учитывать такой важный показатель, как удельное сопротивление грунта. Таблица ПУЭ позволяет узнать его для разных видов почвы:

  1. Песка с разным уровнем залегания подземных вод.
  2. Водонасыщенной супеси (пластинчатой и текучей).
  3. Пластичной и полутвёрдой глины.
  4. Суглинка.
  5. Торфа.
  6. Садовой земли.
  7. Чернозёма.
  8. Кокса.
  9. Гранита.
  10. Каменного угля.
  11. Мела.
  12. Глинистого мергеля.
  13. Пористого известняка.

Все представленные в таблице разновидности грунта отличаются разным уровнем влажности, которая также сказывается на конечном значении сопротивления растекания тока. Для его точного определения удельное сопротивление умножают на коэффициент сезонности. Эта цифра зависит от низшей температуры и способа расположения электродов (вертикального или горизонтального).

Помимо удельного сопротивления почвы (ρ), для подсчёта сопротивления растекания (Rз) необходимо знать длину электрода (l), диаметр прута (d) и глубину расположения средней точки заземлителя (h). Взаимосвязь этих величин отражается в формуле Rз = ρ/2πl∙ (ln (2l/d)+0.5ln ((4h+l)/(4h-l)).

Если основой заземлительной установки являются сваренные сверху вертикальные электроды (n), целесообразнее будет использовать формулу Rn = Rз/(n∙ Kисп), в которой буквами Kисп обозначается коэффициент использования электрода (с учётов влияния соседних). Его также легко найти в специальной таблице.

Независимо от выбранной формулы, при подсчёте защитного заземления следует принимать во внимание нормированное сопротивление заземлителя (для частного дома, источника тока или подстанции), размеры основных деталей конструкции и соединительных элементов, а также количество и метод соединения электродов (в ряд или в форме замкнутого контура). Проводить расчёт заземлительного контура имеет смысл только в том случае, если в качестве заземлителей используются искусственные элементы. Формул для определения сопротивления естественных заземлителей не существует

Формул для определения сопротивления естественных заземлителей не существует

Проводить расчёт заземлительного контура имеет смысл только в том случае, если в качестве заземлителей используются искусственные элементы. Формул для определения сопротивления естественных заземлителей не существует.

Установка системы заземления

В качестве примера рассмотрим монтаж системы заземления в виде треугольника с металлическими штырями в вершинах.

Понадобятся такие материалы для создания электродов:

  • уголок из стали толщиной 4 мм (минимум);
  • прут арматурный сечением 10–12 мм;
  • труба, у которой сечение стенок составляет от 3 до 5 мм;
  • стальная полоса шириной 50 мм.

Длина штырей должна быть в пределах 2,5–3 метров. Для обвязки подойдет металлическая полоса или арматура. Все соединения выполняются путем сварки.

В продаже имеются готовые комплекты для заземления. В качестве примера приведем содержание одного из таких комплектов (для глубинного заземления):

  • оцинкованный стержень длиной 1,5 м и диаметром 20 мм (5 единиц);
  • универсальный зажим;
  • наконечник для погружения электрода;
  • водоотталкивающая лента;
  • обух для вбивания электрода в грунт;
  • металлическая полоса (30×5 мм);
  • биметаллический зажим.

Инструкция по выполнению работ

Вначале подбираем место под установку контура и очищаем пространство от всего лишнего. Оптимальная дистанция от электрода до силового шкафа — 10 метров. Дальнейшие действия осуществляем в таком порядке:

  1. Готовим траншею. Она должна быть треугольной формы. Котлован копаем также, как готовили бы яму под ленточный фундамент. Рекомендуемая глубина траншеи — 1 м, а ширина — 50 см. Дистанция от электрода до электрода — 120 см. От любого из углов треугольника прокапываем канаву к силовому щиту.
  2. Забиваем в землю электроды по вершинам треугольника. Если грунт плотный, бурим шурфы. При сложностях с погружением в землю штырей берем чуть более короткие электроды, но тогда их общее количество в системе нужно увеличить.
  3. Подготавливаем стальные уголки и устанавливаем их по углам треугольной траншеи. Вкопанные стержни должны выступать над поверхностью земли. Это обеспечит возможность соединения их между собой шиной. Шурфы прикапываем землей, перемешанной с солью. Такая мера позволяет уменьшить сопротивление электродов (однако ускорит их коррозию).
  4. Обвязываем установленные уголки путем их сваривания. Обвязку привариваем к электродам. От одного из электродов по ранее приготовленной траншее направляем металлическую полосу в сторону распредшкафа. К щиту прикрепляем проводник с помощью приваренного болта.
  5. Проверяем сопротивление и, если все в порядке, закапываем траншею.

Проверка системы

Для проверки заземлительной системы используем омметр или мегомметр. Норма сопротивления для дачного дома — до 10 Ом. Однако более оптимальным показателем считается 4 Ом. Если показатель сопротивления высокий, забиваем еще несколько электродов и связываем их с уже установленными.

Если нужные приборы отсутствуют, берем обычную лампу накаливания, далее присоединяем к одному из ее контактов провод фазы, а к другому — провод, идущий на заземление. Яркость света от лампочки должна быть такой же, как и в ее обычном состоянии (речь идет о сети 220 вольт). Если свечение отличается от нормального, необходимо проверить все соединения элементов контура, чтобы улучшить качество контактов между ними.

Итоги

Подводя итог всему описанному в предыдущих главах, необходимо отметить следующие основные моменты:

Систематические проверки заземляющих контуров позволяют убедиться в их полной работоспособности.
При решении проблемы касающейся того, каким прибором следует снимать показания – предпочтение отдается специальным многофункциональным устройствам, обеспечивающим высокую точность измерений.
В процессе их проведения важно придерживаться общепринятых методик определения точных значений измеряемых величин.
С полной формулой определения суммарного сопротивления всей заземляющей конструкции можно ознакомиться в соответствующих разделах ПУЭ.

В дополнение к статье предлагаем для просмотра видео материалы, в которых показывают как измеряется сопротивление заземления с помощью различных многофункциональных приборов.

https://youtube.com/watch?v=mBGMmbyOqEs

В заключительной части обзора отметим, что для более подробного ознакомления со всеми рассмотренными вопросами следует обратиться к многочисленным источникам, широко представленным в сети. Там же можно найти большое количество тематических подборок и видео обзоров, позволяющих узнать о том, как проверить и точно измерить сопротивление заземляющих конструкций самого различного типа и класса.

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий