Схемы и способы подключения
Хотя ветроустановка может работать и автономно, значительно лучшего результата удается достичь при помощи комбинированных схем, предусматривающих сочетание ветрового устройства с солнечными батареями, централизованной электросетью, дизельными или газовыми источниками энергии.
Автономная работа. В этом случае ставится единичная установка, при помощи которой улавливается и накапливается ветровая энергия, которая затем преобразуется в необходимый потребителям электрический ток.
На схеме продемонстрирован наиболее простой способ применения ветрогенератора, который целесообразно использовать в регионах, где постоянно дуют сильные ветра
Совмещение ветрогенератора с солнечными панелями. Комбинированный вариант считается надежным и эффективным способом электроснабжения. В случае отсутствия ветра аккумулятор работает от солнечных панелей, а в пасмурную погоду и в течение ночи зарядка происходит от ветровой установки.
Идеальный вариант для частного дома или хозяйства, расположенного вдали централизованной электросети. Такая комбинированная схема позволяет использовать два вида возобновляемой энергии
Комбинированная работа ветрогенератора и электросети. Ветротурбину можно совмещать с элетрокоммуникациями.
Подобная схема типична для промышленных и коммерческих устройств. Подключение к электрокоммуникациям предусматривают также некоторые модели бытовых ветрогенераторов
При избытке произведенного электричества оно поступает в централизованную сеть, а при его недостатке имеется возможность воспользоваться электрическим током из общей энергосистемы.
Нюансы применения ветрогенераторов
В настоящее время ветряные турбины используются в различных сферах народного хозяйства. Промышленные модели разной мощности применяются нефтегазовыми, телекоммуникационными компаниями, буровыми и геолого-разведочными станциями, производственными объектами и государственными учреждениями.
Ветряк может использоваться в качестве дополнительного источника энергии в больницах и других учреждениях, чтобы обеспечить непрерывную подачу электроэнергии в аварийных ситуациях
Особо следует отметить важность применения ветряных установок для оперативного восстановления нарушенного электричества при катаклизмах и стихийных бедствиях. С этой целью ветрогенераторы часто применяются подразделениями МЧС
Бытовые ветротурбины прекрасно подходят для организации освещения и отопления коттеджных поселков и частных домов, а также для хозяйственных целей на фермах.
При этом следует учесть некоторые моменты:
- Устройства до 1 кВт могут дать достаточное количество электроэнергии лишь в ветряных местах. Обычно выработанной ими энергии хватает лишь на светодиодное освещение и питание мелких электронных приборов.
- Чтобы полностью обеспечить электричеством дачу (загородный домик) понадобится ветряной генератор мощностью свыше 1 кВт. Такого показателя достаточно для питания осветительных приборов, а также компьютера и телевизора, однако его мощности недостаточно, чтобы снабдить электричеством круглосуточно работающий современный холодильник.
- Для обеспечения энергией коттеджа понадобится ветряк мощностью 3-5 кВт, однако даже такого показателя не хватит для отопления домов. Чтобы воспользоваться подобной функцией необходим мощный вариант, начиная от 10 кВт.
При выборе модели следует учесть, что показатель мощности, указанный на устройстве, достигается лишь при максимальной скорости ветра. Так, установка в 300В будет вырабатывать указанное количество энергии лишь при скорости потоков воздуха в 10-12 м/с.
Желающим соорудить ветрогенератор собственными руками мы предлагаем следующую статью, в которой детально изложена полезная информация.
Применение и рекомендации по месту установки ветрогенератора
Ветрогенераторы характеризуются широким применением на объектах различного назначения: частные дома и домохозяйства, предприятия, отдельные сооружения, которые требуют автономного энергоснабжения. Их устанавливают на открытых, желательно возвышенных территориях, где есть хороший ветровой потенциал: поле, горы (холмы), остров и даже мелководье. Ветрогенераторы могут устанавливаться как по одиночке так и группами, объединяясь в ветропарк для энергоснабжения масштабных предприятий. Чаще всего ветряные электростанции применяются для энергоснабжения автономных зданий, где отсутствует подключение к городской электросети. Маломощные ветряки используются на охотничьих угодьях, рыбацких станах, на дачных участках для пчеловодов, на автономных светильниках для освещения дорог.
В настоящее время применение ветрогенераторов как альтернативы центральному энергоснабжению нерентабельно из-за большой стоимости оборудования, но, в то же время, возможно использование ветрогенераторов в местах, где отсутствует централизованное энергоснабжение или присутствуют частые перебои. Период окупаемости – 25 лет.
Также существует техническая возможность исполнения генератора, выдающего переменный ток, который можно использовать для прямого питания потребителей, которые не требуют бесперебойного питания, к примеру, насос для осушения какой-нибудь территории.
В Украине на всей территории возможно использование ветрогенераторов с той или иной степенью эффективности. Наиболее выгодно, с точки зрения ветрового потенциала, размещать ветрогенераторы в Крыму и Закарпатье.
Возможные невозможности
Вы не задумывались над вопросом, почему ветровой энергетикой пользуются лишь смельчаки да рьяные умельцы? То есть, этим видом получения электричества рискуют заниматься далеко не все нуждающиеся. Да потому, что сама по себе ветроэнергетика в её прежних модификациях крупна по своим размерам, сложна при монтаже, не совсем удобна в эксплуатации (попробуй забраться на высоту мачты и отремонтировать генератор). Да и много шума издают крутящиеся лопасти и опасны для птиц. И, никуда от этого не денешься, высокая цена.
Названные проблемы остаются в историческом прошлом с появлением ветрогенератора нового поколения. Их несколько видов и об одном из них мы рассказали в первом разделе данной статьи. Вторым представителем из ряда новинок является безредукторный ветрогенератор, в котором энергия вырабатывается «кончиками» лопастей. Здесь отсутствует традиционный вал от пропеллера к генератору, а электричество снимается с обода пропеллера.
Его ротор в форме ферромагнитного обода закреплён на крыльях ветроколеса. По конструкции он простой, легко изготавливается и монтируется. Но размещение постоянных магнитов на концах крыльчатки намного утяжеляют её, что снижает общий КПД установки. Зато агрегат удобен в эксплуатации, потому что простая конструкция не требует излишнего внимания. Такие ветрогенераторы могут работать везде при любых климатических условиях.
То, что вчера казалось невозможным, сегодня становится обыденной реальностью.
Ветрогенератор покоряется интеллектуалам
С дальнего расстояния он совсем не похож на ветрогенератор, а скорее всего, на водонапорную башню не совсем обычной для такого сооружения формы. Если подъехать ближе, увидишь медленное вращение лопастей. Вертикальный вал вращается совершенно бесшумно.
Такую гигантскую турбину собирается серийно выпускать одна американская компания в Аризоне под руководством инженера Мазура. По его расчётам она одна должна поставлять столько электроэнергии, что её хватит для мегаполиса в 750 тысяч домов. В 2007 году инженер поставил себе цель – многократно увеличить КПД ветрогенератора на вертикальной оси и приближался к своей цели все эти годы.
Изобретатель работал в двух направлениях: первое – сделать как можно больший захват лопастями воздушного потока и второе – свести к нулю трение опоры ветролопастей. Огромных размеров вертикальный ротор должен выполнить первую задачу, а вращающаяся турбина на магнитной подушке – вторую.
О второй задаче надо сказать более подробно. Вращение без трения достигается за счёт магнитной левитации, о чём мы рассказывали в статье о принципах работы ветрогенераторов в разделе под заголовком «Творцы новых возможностей». Весь вертикальный роторный блок при вращении поднимается на своей оси и совершенно не касается нижнего опорного подшипника. Он установлен только для старта, для разгона турбины. Как только она набирает обороты, так становится, как бы, невесомой и отрывается от подшипника. В результате трение сводится к нулю, если не считать трения самой турбины о воздух. КПД сразу подскакивает вверх.
Гигантская турбина очень чувствительна и реагирует на малейшее дуновение ветерка. Такая способность подниматься во время вращения за счёт магнитной левитации давно занимала учёные и изобретательские умы планеты. Это такое явление, при котором любая вещь или предмет, имея вес, отрывается от поверхности и парит в пространстве без всякого применения отталкивающей силы. Полёт птиц – уже не левитация.
Вертикальные ветрогенераторы с левитирующей способностью ротора овладели сейчас мыслями инженеров-изобретателей. И вот первые результаты уже налицо. В проекте Мазура виден «плавающий» ротор на магнитной подушке, а вместо генератора установлен линейный синхронный двигатель. Ветрогенератор на магнитной подушке множеством лопастей максимально захватывают воздушный поток и по предположению учёных такая турбина будет вырабатывать электроэнергию по сказочно мизерной цене – меньше цента за киловатт-час.
Ротор Онипка — ветрогенератор для низких и средних скоростей ветра:
Невероятно! Но скоро это произойдет. Альтернативные источники энергии третьего поколения перевернут мир в целом. Начало уже заложено. Ветряные турбины – вот электроэнергетическое будущее человечества.
Ветрогенератор Онипко
Продолжая обговаривать необычные варианты винтов, невозможно не упомянуть ветряк Онипко, который отличается конусообразными лопастями. Главным плюсом этих установок, является способность получения и преобразование в кВт при скорости потока 0,1 м/с. Лопастные, в отличии, начинают обороты на скорости 3 м/с. Онипко бесшумный и полностью безопасен для внешней среды. Он не нашёл массового распространения, но как говорят результаты исследований, он станет отличным вариантом для больших производственных объектов, что ищут альтернативные источники, так как обладает большой мощностью.
В виде панциря улитки. Инновационным прорывом считают изобретение компании Archimedes, которая находиться в Нидерландах. Она предложила вниманию общественности конструкцию бесшумного типа, который можно устанавливать прямо на крыше многоэтажного здания. Согласно исследованиям, агрегат может работать в комплексе с солнечными батареями и свести к нулю зависимость здания от внешней энергосети. Новые генераторы носят название Liam F1. Оборудование имеет вид небольшой турбины диаметр которой 1,5 метра, и вес 100 килограмм.
По своей форме установка напоминает панцирь улитки. Турбина разворачивается по направлению захватывая воздушный поток. Агустин Отегу изобретатель всемирно известной спиралевидной турбины Nano Skin, видит будущее человечества не в громадных солнечных батареях и турбинах с большим размахом винтов. Он рекомендует монтировать их в наружных частях зданий. Турбины начнут вращаться ветром и создадут энергию, которая будет передаваться непосредственно в электросеть здания.
Генератор для ветровой турбины
Для функционирования ветряков необходимы обычные трехфазные генераторы. Конструкция таких устройств аналогична моделям, применяемым на автомобилях, но имеет большие параметры.
В приборах для ветряных турбин предусмотрена трехфазная обмотка статора (соединение по типу «звезда»), откуда выходят три провода, идущие на контроллер, где происходит трансформация переменного напряжения в постоянное.
Ротор генератора для ветротурбины изготовляется на неодимовых магнитах: в подобных конструкциях нецелесообразно использовать электровозбуждение, поскольку катушка потребляет много энергии
Для повышения оборотов нередко применяется мультипликатор. Такое приспособление позволяет увеличить мощность действующего генератора или использовать устройство меньшего размера, что снижает стоимость установки.
Мультипликаторы чаще применяются в вертикальных ветрогенераторах, у которых процесс вращения ветроколеса осуществляется медленнее. Для горизонтальных устройств с высокой скоростью вращения лопастей мультипликаторы не требуются, что упрощает и удешевляет конструкцию.
Специфика сборки и монтажа ветрогенератора из стиральной машинки и ветроустановки из автомобильного генератора подробно изложена в рекомендуемых нами статьях.
Принцип работы ветрогенератора
В основу функционирования ветрогенератора положена трансформация кинетической энергии ветра в механическую энергию ротора, которая затем преобразуется в электроэнергию.
Ветроэнергетика является одной из наиболее перспективных отраслей возобновляемой энергетики. Современные конструкции позволяют экономически эффективно применять силу воздушных потоков, используя ее для выработки электричества
Принцип работы достаточно прост: вращение лопастей, закрепленных на оси устройства, приводит к круговым движениям роторгенератора, благодаря чему вырабатывается электроэнергия.
Получаемый нестабильный переменный ток «стекает» в контроллер, где он преобразуется в постоянное напряжение, способное зарядить батареи. Оттуда питание поступает на инвертор, где оно трансформируется в переменное напряжение с показателем 220/380 В, которое и подается потребителям.
Мощность ветрогенератора напрямую зависит от мощности потока воздуха (N), рассчитывается согласно формуле N=pSV3/2, где V – скорость ветра, S – рабочая площадь, p – плотность воздуха.
Проблематика использования ветряков
При всей привлекательности ветродвигателей как бесплатного источника энергии, их эксплуатация сопрягается с целым рядом неэкономических проблем. Прежде всего это непостоянство. Очевидно, что пользователь никак не может влиять на силу ветра и ему остается лишь надеяться на изменение погодных условий. Именно по этой причине на крупных ветровых станциях подключают аварийное энергоснабжение – как раз на случай длительного отсутствия ветровых потоков достаточной силы.
Этим же аспектом обусловлено и внедрение в комплекс генераторов вспомогательной аппаратуры. Наличие батареи аккумулятора, инвертора и резервного генератора обязательно для того, чтобы мощность стабилизировалась и напряжение выравнивалось, так как ветер может вовсе отсутствовать, а может выдавать разную скорость движения.
И здесь уже возникает экономический аспект, поскольку широко укомплектованные ветровые генераторы в любом случае требуют расходов на техническое содержание. Тем не менее по мере оптимизации энергетического оборудования и эта проблема постепенно утрачивает главенствующее значение, оставляя возможности для развития отрасли.
Принцип работы ветрогенератора
В основу функционирования ветрогенератора положена трансформация кинетической энергии ветра в механическую энергию ротора, которая затем преобразуется в электроэнергию.
Принцип работы достаточно прост: вращение лопастей, закрепленных на оси устройства, приводит к круговым движениям роторгенератора, благодаря чему вырабатывается электроэнергия.
Ветроэнергетика является одной из наиболее перспективных отраслей возобновляемой энергетики. Современные конструкции позволяют экономически эффективно применять силу воздушных потоков, используя ее для выработки электричества
Получаемый нестабильный переменный ток «стекает» в контроллер, где он преобразуется в постоянное напряжение, способное зарядить батареи. Оттуда питание поступает на инвертор, где оно трансформируется в переменное напряжение с показателем 220/380 В, которое и подается потребителям.
Мощность ветрогенератора напрямую зависит от мощности потока воздуха (N), рассчитывается согласно формуле N=pSV3/2, где V – скорость ветра, S – рабочая площадь, p – плотность воздуха.
Принцип работы
Как уже говорилось, ВЭС имеют роторную или крыльчатую конструкцию. Роторные станции, как правило, имеют устройства с вертикальной осью вращения. Они во многом удобнее, чем крыльчатые, так как не издают при работе сильный шум и не требовательны к установке по направлению ветра. При этом, роторные конструкции менее эффективны и могут использоваться на небольших частных станциях.
Крыльчатые устройства способны выдавать максимальный эффект. Они используют получаемую энергию намного эффективнее, чем роторные образцы, но нуждаются в правильном ориентировании по отношению к потоку, что означает присутствие дополнительных приспособлений или оборудования.
Все виды действуют по одному принципу — поток ветра раскручивает подвижную часть, которая передает вращение на генератор, вследствие чего в системе образуется электроток. Он заряжает аккумуляторы, от которых питаются инверторы, преобразующие полученный ток в стандартное напряжение и частоту, подходящие для приборов потребления.
Для обеспечения большого числа потребителей отдельные ветрогенераторы соединяются в систему, образуя станции — ВЭС.
Система торможения вращения лопастей
Чтобы установка не вышла из строя при сильном напоре воздуха, она снабжена специальной системой торможения. Если раньше движущиеся магниты индуцировали ток в обмотках, то теперь данная сила используется для остановки вращающихся магнитов. Для этого создается короткое замыкание, при котором замедляется движение ротора. Возникающее противодействие замедляет вращение магнитов.
Конструкция ветрогенератора и узлов
При ветре больше 50 км/час тормоза автоматически замедляют вращение ротора. Если скорость движения воздуха доходит до 80 км/час, тормозная система полностью останавливает лопасти. Все части турбины сконструированы так, чтобы максимально использовалась воздушная энергия. Когда ветер дует, лопасти вращаются, и генератор преобразует их движение в электричество. Совершая двойное преобразование энергии, турбина производит электричество из обычного перемещения воздушных масс.
Внешне ветрогенератор напоминает флюгер — направлен в ту сторону, откуда дует ветер
Данное устройство весьма полезно не только в каких-то экстремальных условиях, но и в обычной повседневной жизни. Довольно часто системы ветрогенераторов применяются на дачах или в тех населенных пунктах, где регулярно бывают перебои с подачей электроэнергии. Самостоятельно сделанный автономный источник электричества имеет такие преимущества:
- установка экологически чистая;
- отсутствует потребность её заправки топливом;
- не накапливаются какие-либо отходы;
- устройство работает очень тихо;
- имеет большой срок эксплуатации.
Все ветрогенераторы работают по одинаковой схеме. Сначала полученное от давления ветра переменное напряжение преобразуется в постоянный ток. Благодаря этому заряжается аккумулятор. Затем инвертором снова производится переменный ток. Это нужно для того, чтобы светились лампочки; работал холодильник, телевизор и т. д. Благодаря аккумуляторной батарее, можно пользоваться электроприборами в безветренную погоду. Кроме того, во время сильных порывов ветра напряжение в сети остаётся стабильным.
Ветрогенераторы и контроллеры заряда АКБ
Если механический ветряк вполне возможно сделать самостоятельно, можно ли сделать своими руками ещё и контроллер ветряка?
Чтобы иметь какое-то представление о контроллерах ветрогенераторов и успешно воспроизводить такую технику своими руками, не лишними будут базовые сведения об этих приборах.
Контроллер заряда аккумуляторной батареи для ветрогенератора небольшой мощности. Контроль некоторых параметров системы осуществляется через встроенный в конструкцию жк-дисплей
Контроллер, обслуживающий аккумуляторные батареи, призван в первую очередь управлять процессом заряда АКБ. Это его основная функция, но ее условно следует разделить ещё на целый ряд подфункций.
Например, одним функционалом отслеживается ток заряда и ток саморазряда. Другой функционал реализует действия, направленные на измерение температуры и давления. Третий отвечает за компенсацию разницы энергетических потоков, когда одновременно с потреблением тока нагрузкой осуществляется заряд АКБ.
Приборы промышленного изготовления наделены полноценным функционалом. А вот относительно любительских конструкций такого не скажешь. Устройства, выполненные на базе простейших схемных решений в домашних условиях своими руками – это контроллеры, далёкие от совершенных моделей.
Тем не менее, они работают и достаточно продуктивно позволяют эксплуатировать ветрогенераторы. Как правило, в самодельных конструкциях реализована лишь одна функция – защита от перенапряжения и от глубокой разрядки.
Одна из многочисленных вариаций контроллеров для ветряков, изготовленных своими руками. Такие конструкции отличаются незамысловатыми техническими решениями и простейшим исполнением монтажа
Почему внедрение контроллера в систему ветряка является обязательным моментом? Потому что в режиме энергетической подпитки АКБ без применения контроллера следует ожидать неприятных последствий:
- Деградацию структуры аккумулятора по причине неконтролируемых химических процессов.
- Неконтролируемый рост давления и температуры электролита.
- Утрату аккумулятором свойств подзарядки в связи с имеющим место долговременным разрядом.
Контроллер заряда для схемы ветрогенераторной установки выполняется, как правило, в виде отдельного электронного модуля. Этот модуль съёмный и быстро отключаемый. Приборы промышленного изготовления обязательно оснащаются индикацией режимов и состояний – световой или визуально передаваемой через дисплей.
На практике могут применяться два вида устройств – встраиваемые непосредственно в корпус ветрогенератора и подключаемые к аккумуляторной батарее.
Развитие ветровой энергии в северной Европе
Норвегия расположена на Скандинавском полуострове, большая часть территории омывается морем, где дуют сильные северные ветра. Возможности получения электричества безграничны. В 2014 году был введен в эксплуатацию парк проектной мощностью 200 мегаватт. Такой комплекс обеспечит 40 тысяч жилых домов. Не стоит забывать, что Норвегия и Дания тесно сотрудничают на энергетическом рынке. Дания – это мировой лидер в области офшорной энергетики.
Большинство электростанций расположено в море, более 35% электроэнергии вырабатывается такими комплексами. Не имея атомных станций, Дания легко обеспечивает себя и Европу электричеством. Грамотное использование альтернативных источников позволило добиться такого прогресса.
Два вида, два соперника
Как уже было отмечено, в продаже пока существуют ветрогенераторы двух видов (по расположению вала вращения к поверхности земли) – горизонтальные и вертикальные. Поговорим вначале о вертикальных.
Ветросиловые установки (ВСУ) с вертикальной осью вращения имеют неоспоримое для быта преимущество: их узлы, требующие обслуживания, сосредоточены внизу и не нужен подъем наверх. Там остается, и то не всегда, упорно-опорный самоустанавливающийся подшипник, но он прочен и долговечен. Поэтому, проектируя простой ветрогенератор, отбор вариантов нужно начинать с вертикалок.
Ротор Савониуса
В начале октября 1924 года русские изобретатели братья Я. А. и А. А. Воронины получили советский патент на поперечную роторную турбину, в следующем году финский промышленник Сигурд Савониус организовал массовое производство подобных турбин. За нам и осталась слава изобретателя этой новинки.
Ротор Ворониных-Савониуса, или для краткости, ВС, это, как минимум, два полуцилиндра на вертикальной оси вращения (см. фото). И какое бы направление ветра не было, как бы резко он не изменял свои порывы, такой ветряк будет спокойно вращаться вокруг своей оси, вырабатывая энергию. Это единственное и главное преимущество вертикального ветряка перед горизонтальным.
А главный его недостаток – низкое использование ветровой энергии. Объясняется это тем, что лопасти-полуцилиндры работают только в четверть оборота, а остальную часть окружности вращения они как бы тормозят своим движением скорость вращения. Расчёты показали, что при этом используется лишь третья часть ветровой энергии.
Вертикальные ветрогенераторы с ротором Дарье
В 1931 году французский конструктор Жорж Дарье (George Darrieus) предложил свой вариант ротора, который имеет от двух и более плоских лопастей. Он еще проще, чем ВС: лопасти – из простой упругой ленты безо всякого профиля. Прост в изготовлении и монтаже, но с малой эффективностью — КИЭВ – до 20%.
Теория ротора Дарье еще недостаточно разработана. Ясно только, что начинает он раскручиваться за счет разности аэродинамического сопротивления горба и кармана ленты, а затем становится вроде как быстроходным, образуя собственную циркуляцию. Вращательный момент мал, а в стартовых положениях ротора параллельно и перпендикулярно ветру вообще отсутствует, поэтому самораскрутка возможна только при нечетном количестве лопастей (крыльев?) В любом случае на время раскрутки нагрузку от генератора нужно отключать.
Есть у ротора Дарье еще два нехороших качества. Во-первых, при вращении вектор тяги лопасти описывает полный оборот относительно ее аэродинамического фокуса, и не плавно, а рывками. Поэтому ротор Дарье быстро разбивает свою механику даже при ровном ветре. Во-вторых, Дарье не то что шумит, а вопит и визжит, вплоть до того, что лента рвется. Происходит это вследствие ее вибрации. И чем больше лопастей, тем сильнее рев. Так что Дарье если и делают, то двухлопастными, из дорогих высокопрочных звукопоглощающих материалов (карбона, майлара), а для раскрутки посередине мачты-древка приспосабливают небольшой ВС.
Геликоидный ротор
ветрогенератора с вертикальной осью вращениягеликоидным ротором
И, наконец, существуют ветрогенераторы с многолопастным ротором. Это один из самых эффективных типов из разряда вертикальных ветрогенераторов. (См. рисунок).
Виды конструкций
В современных конструкциях ветряков используют один из двух вариантов двигателей – с горизонтальной и вертикальной осью вращения. Иначе их называют, соответственно, крыльчатыми и карусельными. Что касается горизонтального устройства, то оно внешне напоминает ту же мельницу, но с меньшим количеством лопастей. Это ветровые генераторы, в которых акцент делается на аэродинамические характеристики. По расчетам специалистов, эффективность работы ветряка зависит не от количества лопастей, а от их длины и качества ротора. Поэтому крыльчатые ветродвигатели часто оснащаются всего одной-двумя лопастями, длина которых может достигать 100 м – разумеется, в крупных промышленных установках.
Карусельные модели выгодны тем, что не зависят от направления ветра. В простейших конструкциях предусматривается всего одна лентообразная лопасть, которая спиралью проходит через столбчатый стержень. Поэтому вертикальный ветровой генератор даже при небольшой скорости потоков воздуха может генерировать минимальные объемы энергии. С другой стороны, при сильном ветре такие конструкции невыгодны по той причине, что из-за сил противодействия спиральная лента тормозит саму себя, ограничивая производительность.
Виды ветрогенераторов
Принцип работы ветрогенераторов в большинстве случаев аналогичен. Но существует ряд разновидностей. Часто их различают по виду материалов, которые используются для изготовления роторных лопастей, их число, положение оси вращения, шаговый признак винта. Чтобы иметь понимание о работе, ветрогенератора, нужно вкратце рассмотреть эти виды.
Двухлопастной ветрогенератор
Трёхлопастной ветрогенератор
Многолопастной ветрогенератор
Помимо числа лопастей, ветрогенераторы отличаются материалами, их которых их делают. Лопасти могут быть жёсткими (металл или стеклопластик) или парусными. Последние менее практичны, но зато дёшево стоят. По шаговому признаку винта различают устройства с фиксированным и изменяемым шагом. Ветрогенераторы с фиксированным шагом являются более надёжными. Установки с изменяемым шагом вращения позволяют менять скорость, но их конструкция имеет большие габариты и требует дополнительных расходов монтаж и обслуживание.
Ветрогенератор с вертикальной осью вращения
- Ветрогенератор Савониуса. Это несколько полуцилиндров полых внутри, которые закреплены на вертикальной оси. Здесь плюс заключается в том, что они могут вращаться вне зависимости от силы и направления ветра. Основной минус в том, что энергию ветра используется только на 1/3;
- Геликоидный ротор. Этот вариант имеет закрученные лопасти, благодаря чему обеспечивается равномерное вращение. Это долговечный ветрогенератор, но сложный и дорогой;
- Ротор Дарье. Система представляет собой конструкцию с двумя или более лопастями в форме плоских пластин. Ротор прост в изготовлении, но вырабатывает немного энергии. Для его запуска потребуется дополнительный механизм;
- Многолопастные системы с вертикальной осью. Являются наиболее эффективными в плане выработки электроэнергии.
Можно подразделить ветрогенераторы на импортные и отечественные. Среди зарубежных достаточно много китайских производителей. Присутствует также продукция из США и ЕС. Без проблем можно найти и продукцию российских предприятий. Стоимость ветрогенераторов зависит от мощности, наличия дополнительных функциональных возможностей (например, солнечных модулей). Цены могут меняться от десятков до сотен тыс. р.
Как выбрать ветровой генератор
Для того чтобы выбрать ветрогенератор необходимо:
- Рассчитать установленную мощность электрических приборов, которые планируетсяподключить к данному источнику энергии.
- Исходя из полученных значений мощности и среднегодовой скорости ветра, в регионе установки агрегата, определяется мощность генератора. Мощность следует взять с учетом коэффициента запаса, в расчете на рост нагрузок и дабы не перегружать устройство, во время пиковых нагрузок.
- Следует учитывать особенности климата в месте монтажа устройства, т. к. осадки негативно влияют на производительность генератора. Учесть климатические особенности места проживания.
- Определить КПД установки – это один из важнейших показателей.
- Узнать показатели работы генератора в отношении шума, производимого в процессе работы.
- Провести сравнительный анализ различных типов генераторов по всем характеристикам и параметрам.
- Ознакомиться с отзывами пользователей подобных установок.
- Сделать анализ отечественных и зарубежных производителей, изучить отзывы об этих предприятиях.
Преимущества ветровых генераторов
Ветровые электростанции уже долгое время используются в быту, на производстве и других областях.
За это время удалось выявить их основные положительные качества и преимущества:
- Энергия ветра, используемая для ветроэлектростанций, является бесплатной и самое главное – возобновляемой. Устройства не загрязняют окружающую среду и не выделяют каких-либо вредных веществ. В перспективе планируется еще шире использовать экологически чистые ветровые электростанции в России, что позволит сократить количество обычных установок с вредными выбросами.
- Снижается зависимость электроснабжения через центральные электрические сети.
- Широкие перспективы для дальнейшего развития и внедрения новых прогрессивных технологий, и это не последние достоинства этих установок.
- Постепенное снижение затрат на получение энергии, без которых не обойтись на первоначальном этапе. В течение последних 20 лет стоимость оборудования и комплектующих снизилась примерно на 80%. Энергия ветра становится наиболее прибыльной среди всех альтернативных источников электроэнергии.
- Ветряки имеют достаточно высокий срок эксплуатации, составляющий 20-30 лет. В течение этого срока окружающий ландшафт остается неповрежденным.
- Простота сборки и дальнейшего использования. Ветряная электростанция монтируется очень быстро, затраты на ремонт и обслуживание сравнительно низкие. Произведенная электроэнергия количественно превышает затраченную энергию ветра примерно в 85 раз. Потери при передаче электроэнергии сравнительно невысокие.
Технические характеристики
К основным техническим характеристиками ВЭУ относятся:
- номинальная мощность устройства,
- минимальная скорость ветра, при которой происходит запуск ротора,
- максимальная скорость ветра, при которой требуется торможение вращающейся части.
Помимо этих параметров важно определить срок окупаемости устройства, его долговечность и расходы на содержание. Эти факторы являются определяющими при выборе источника электроснабжения между дизельными станциями и ВЭУ
Для регионов со слабыми ветрами такой выбор весьма актуален, поскольку вкладываться в заведомо неэффективный комплекс нерационально и не способствует решению проблемы.
Ветроэнергетические установки являются перспективным вариантом решения проблемы энергообеспечения для отсталых регионов. При грамотном подходе и использовании оптимального комплекта оборудования, можно создавать как мелкие станции, обеспечивающие отдельные жилые дома, так и более крупные установки, способные снабжать энергией населенные пункты.
Возможность производства энергии без нанесения ущерба экологии региона должна ставиться в первоочередные задачи, и ветроэнергетика в этом отношении является наиболее удачным вариантом решения проблем.