Схема работы устройства плавного пуска, его назначение и конструкция

Самодельные варианты

Существует множество схем модернизации электроинструмента при помощи УПП. Среди всех разновидностей широкое применение получили устройства на симисторах. Симистор — полупроводниковый элемент, позволяющий плавно регулировать параметры питания. Существуют простые и сложные схемы, которые отличаются между собой вариантами исполнения, а также поддерживаемой мощностью, подключаемого электроинструмента. В конструктивном исполнении бывают внутренние, позволяющие встраиваться внутрь корпуса, и внешние, изготавливаемые в виде отдельного модуля, выполняющего роль ограничителя оборотов и пускового тока при непосредственном пуске УШМ.

Простейшая схема

УПП с регулированием оборотов на тиристоре КУ 202 получил широкое применение благодаря очень простой схеме исполнения (схема 1). Его подключение не требует особых навыков. Радиоэлементы для него достать очень просто. Состоит эта модель регулятора из диодного моста, переменного резистора (выполняет роль регулятора U) и схемы настройки тиристора (подача U на управляющий выход номиналом 6,3 вольта) отечественного производителя.


Благодаря размерам и количеству деталей регулятор этого типа можно встроить в корпус электроинструмента. Кроме того, следует вывести ручку переменного резистора и сам регулятор оборотов можно доработать, встроив кнопку перед диодным мостом.

Основной принцип работы заключается в регулировке оборотов электродвигателя инструмента благодаря ограничению мощности в ручном режиме. Эта схема позволяет использовать электроинструмент мощностью до 1,5 кВт. Для увеличения этого показателя необходимо заменить тиристор на более мощный (информацию об этом можно найти в интернете или справочнике). Кроме того, нужно учесть и тот факт, что схема управления тиристором будет отличаться от исходной. КУ 202 является отличным тиристором, но его существенный недостаток состоит в его настройке (подборка деталей для схемы управления). Для осуществления плавного пуска в автоматическом режиме применяется схема 2 (УПП на микросхеме).

Плавный пуск на микросхеме

Оптимальным вариантом для изготовления УПП является схема УПП на одном симисторе и микросхеме, которая управляет плавным открытием перехода p-n типа. Питается устройство от сети 220 В и ее несложно собрать самому. Очень простая и универсальная схема плавного пуска электродвигателя позволяет также и регулировать обороты (схема 2). Симистор возможно заменить аналогичным или с характеристиками, превышающими исходные, согласно справочнику радиоэлементов полупроводникового типа.

Схема 2. Схема плавного пуска электроинструмента

Устройство реализуется на основе микросхемы КР118ПМ1 и симисторе. Благодаря универсальности устройства его можно использовать для любого инструмента. Он не требует настройки и устанавливается в разрыв кабеля питания.

При пуске электродвигателя происходит подача U на КР118ПМ1 и плавный рост заряда конденсатора С2. Тиристор открывается постепенно с задержкой, зависящей от емкости управляющего конденсатора С2. При емкости С2 = 47 мкФ происходит задержка при запуске около 2 секунд. Она зависит прямо пропорционально от емкости конденсатора (при большей емкости время запуска увеличивается). При отключении УШМ конденсатор С2 разряжается при помощи резистора R2, сопротивление которого равно 68 к, а время разрядки составляет около 4 секунд.

Для регулирования оборотов нужно заменить R1 на резистор переменного типа. При изменении параметра переменного резистора происходит изменение мощности электромотора. R2 изменяет величину тока, протекающего через вход симистора. Симистор нуждается в охлаждении и, следовательно, в корпус модуля можно встроить вентилятор.

Таким образом, для запуска электродвигателей различного инструмента необходимо использовать УПП заводского изготовления или самодельные. УПП применяются для увеличения срока эксплуатации инструмента. При запуске двигателя происходит резкое увеличение тока потребления в 7 раз. Из-за этого возможно подгорание статорных обмоток и износ механической части. УПП позволяют значительно снизить пусковой ток. При изготовлении УПП самостоятельно нужно соблюдать правила безопасности при работе с электричеством.

Устройство плавного пуска — электротехническое устройство, используемое в асинхронных электродвигателях, которое позволяет во время запуска удерживать параметры двигателя (тока, напряжения и т.д.) в в безопасных пределах. Его применение уменьшает пусковые токи, снижает вероятность перегрева двигателя, устраняет рывки в механических приводах, что, в конечном итоге, повышает срок службы электродвигателя.

Основные параметры и характеристики УПП

Ниже в тексте будут приведены схемы аппаратов плавного запуска для изучения и собственноручного изготовления. Для тех, кто не готов осуществить плавный пуск асинхронного электродвигателя своими руками, полагаясь на готовое изделие, будет полезной информация о существующих разновидностях софт стартеров.


Пример аналогово и цифрового УПП, в модульном исполнении (устанавливается на DIN-рейку)

Одним из главных параметров при выборе УПП является мощность обслуживаемого электромотора, выраженная в киловаттах. Не менее важным является время разгона и возможность регулировки интервала запуска. Данными характеристиками обладают все существующие софт стартеры. Более совершенные УПП являются универсальными и позволяют настраивать параметры мягкого запуска в широком диапазоне значений относительно характеристик двигателя и требований технологического процесса.


Пример универсального софтстартера

В зависимости от типа софт стартера в них могут присутствовать различные опции, повышающие функциональность аппарата и позволяющие осуществлять контроль работы электродвигателя. Например, при помощи некоторых УПП возможно осуществление не только плавного запуска электромотора, но и его торможение. Более совершенные софт стартеры осуществляют защиту двигателя от перегрузок и позволяют также регулировать вращательный момент ротора при пуске, останове и работе.


Пример различий в технических характеристиках различных УПП от одного производителя

Разновидности софт стартеров

По способу подключения УПП подразделяются на три вида:

  1. Однофазные. Регулируют пусковое напряжение на одной фазе для уменьшения пускового момента. Обладают ограниченной функциональностью и не снижают пусковой ток. В виду удешевления полупроводниковых силовых ключей, однофазные УПП применяются редко.

    Структурная схема однофазного УПП

  2. Двухфазные. Осуществляют регулировку пускового тока по двум фазам, что позволяет улучшить динамические характеристики запуска двигателя, но не решают проблему с несимметричной «просадкой» напряжения. Используется в основном радиолюбителями, осуществляющими плавный пуск асинхронного электродвигателя своими руками, схема устройства приведена ниже.

    Структурная схема двухфазного УПП

  3. Трехфазные. Дают максимально возможное уменьшение пускового момента, снижая пусковой ток до минимально возможной трехкратной перегрузки. Позволяют осуществлять большой набор функций помимо плавного разгона – регулировку момента, торможение, слежение за параметрами, дистанционное управление, защиту от тепловых перегрузок, и т. д.

    Структурная схема трехфазного УПП

УПП своими руками

Для самостоятельного изготовления УПП используемая схема плавного пуска асинхронного двигателя своими руками будет зависеть от возможности и навыков мастера. Самостоятельное смягчение пусковых перегрузок при помощи автотрансформатора доступно практически любому пользователю без специальных знаний, но данный способ является неудобным ввиду необходимости ручной регулировки старта электродвигателя. В продаже можно встретить недорогие устройства плавного запуска, которые придется самостоятельно подключить к электроинструменту, не обладая глубокими познаниями в радиотехнике. Пример работы до и после софт стартера, а также его подключение показано на видео ниже:

Для мастеров, обладающих общими знаниями в электротехнике, и владеющих практическими навыками электромонтажа подойдет для собственноручного осуществления плавного запуска схема переключения «звезда-треугольник». Данные схемы, несмотря на их солидный возраст, широко распространены и успешно используются по сей день ввиду простоты и надежности. В зависимости от квалификации мастера в сети интернет можно найти схемы УПП для повторения своими руками. Пример схемы относительно простого двухфазного УПП

Современные софт стартеры имеют внутри сложную электронную начинку из множества электронных деталей, работающих под управлением микропроцессора. Поэтому для изготовления аналогичного УПП своими руками по имеющимся в сети интернет схемам необходимо не только мастерство радиолюбителя, но и навыки программирования микроконтроллеров.

Изготовление розетки плавного пуска

Самое главное требование для такой розетки — это ее мобильность. Поэтому вам понадобится переноска.

С помощью нее можно будет плавно запускать инструмент в любом месте — в гараже, на даче, при строительстве своего дома на разных участках стройплощадки.

Первым делом переноску нужно разобрать.

Основные провода питания в ней могут быть либо припаяны, либо подсоединены на винтовых зажимах.

В зависимости от этого, также будет происходить и подключение вашей дополнительной розетки. Это должна быть именно дополнительная розетка возле переноски, чтобы иметь возможность одновременно подключать инструмент в разных режимах.

Кстати, если вы по ошибке включите болгарку или циркулярку, имеющие заводской встроенный плавный пуск в розетку, также снабженной таким УПП, то на удивление все будет работать. Единственный момент — получится задержка запуска пилы или оборотов диска на пару секунд, что не очень удобно в работе и без привычки может озадачить.

Вот реальные испытания такого подключения, проведенные одним мастером с ютуб BaRmAgLoT777. Его комментарий после таких опробований на гравере типа Dremel, дреле Bosch, фрезере Makita, циркулярной пиле Интерскол:

Далее для сборки розетки берете многожильный медный провод сечением 2,5мм2 и зачищаете его концы.

После чего необходимо залудить контактную площадку на переноске, куда будет припаиваться этот провод.

Надежно припаиваете жилы кабеля к этим площадкам.

Аккуратно укладываете провода и закрываете удлинитель.

Берете квадратную наружную розетку для установки на внешней поверхности стен, и в ее корпус примеряете блок плавного пуска. Так как он имеет компактные прямоугольные размеры, то должен поместиться туда без особых проблем.

Монтируете и закрепляете корпус розетки на одной площадке с удлинителем.

Блочок ПП подключаете в разрыв любого провода, фазного или нулевого. Не перепутайте, на него не подается одновременно фаза и ноль, т.е. 220В.

Он устанавливается на какой-то один из проводов.

Также для этого БПП, нет никакой разницы с какой стороны сделать вход, а с какой выход. Скрутки пропаиваются и изолируются термоусадкой.

После чего, все внутренности розетки собираются в корпус и остается всю конструкцию закрыть крышкой.

На этом вся переделка переноски и изготовление розетки можно считать завершенной. По времени это займет у вас не более 15 минут.

Настройка параметров

Рассмотрим подробно для примера переднюю панель Софтстартера Toshiba TMC7, внешний вид которого показан в самом начале этой статьи.

Мягкий пускатель (SoftStarter) Toshiba TMC7 – передняя панель

Reset – сброс ошибок.

Trip codes – коды ошибок, которые индицируются в определенном количестве миганий светодиода Ready.

Вот количество миганий и соответствующая ошибка:

  1. Проблема с силовой частью
  2. Превышено время старта
  3. Перегрузка двигателя
  4. Перегрев двигателя
  5. Дисбаланс по фазам
  6. Частота на входе вышла за пределы 40…72 Гц
  7. Ошибка чередования фаз
  8. Ошибка связи (в случае применения дополнительного модуля)

 Current Ramp – Нарастание тока при запуске, в процентах и в секундах.

Motor FLC – ток двигателя, в процентах от номинала мягкого пускателя. Параметр защиты двигателя.

Current limit – ограничение тока во время старта

Soft Stop – время мягкого останова. 0 – выбег двигателя (отключение питания, вращение по инерции)

Motor Trip Class – Класс термозащиты двигателя. Чем выше значение, тем медленнее сработает тепловая защита двигателя при перегрузке

AUX relay, Phase rotatoin – функция внутреннего реле, защита от смены фаз от неправильного вращения

Excess Start Time – Превышение времени старта. Двигатель за данное время не смог развить номинальную скорость. Требуется увеличить уровень ограничения тока.

По контактам управления.

С1, С2 – клеммы подключения термистора двигателя. Если термистора нет, устанавливается перемычка.

R33…R44 – выходы функциональных реле

02, 01 – подключение кнопок управления

А2, А1, А3 – выходы для питания цепей управления и контрольных цепей схемы софт стартера.

Операция с переменной скоростью вращения

Сетевое напряжение переменного тока (рис. 5) выпрямляется с помощью пассивного диодного моста. Это означает, что диоды срабатывают, когда линейное напряжение больше напряжения на секции конденсатора. Результирующая форма волны имеет два импульса в течение каждого полупериода, по одному для каждого окна диодной проводимости.

Форма волны показывает некоторый непрерывный ток, когда проводимость переходит от одного диода к следующему. Это типично, когда он используется в звене постоянного тока привода и присутствует некоторая нагрузка. Инверторы используют широко-импульсную модуляцию для создания выходных сигналов. Треугольный сигнал генерируется на несущей частоты, с которой инвертор IGBT переключится.

Эта форма сигнала сравнивается с синусоидальной формой волны на основной частоте, которая должна быть доведена до двигателя. Результатом является волновая форма U, показанная на рисунке.

Необходимость плавного пуска электродвигателей

Статорная обмотка является катушкой индуктивности, состоящей из активного сопротивления и реактивного. Значение последнего зависит от частоты подаваемого напряжения. При запуске двигателя реактивное сопротивление изменяется от нуля, а пусковой ток имеет большую величину, многократно превышающую номинальный. Момент вращения также велик и может разрушить приводимое в движение оборудование. В режиме торможения также появляются броски тока, приводящие к повышению температуры статорных обмоток. При аварийной ситуации, связанной с перегревом двигателя, возможен ремонт, но параметры трансформаторной стали изменяются и номинальная мощность снижается на 30 %. Поэтому необходим плавный пуск.

Как произвести подключение прибора

     Разумеется, прибор потребуется подключить к электросети. Также потребуется определить способ шунтирования. Даже при том, что шунтирующий контактор коммутирует контактор номинальный, потребуется пользоваться моделью, рассчитанной на запуск напрямую

Нужно будет уделить внимание фазировке. В противном случае, во время первого же пуска случится короткое замыкание

     Есть модели устройств плавного запуска, которые поддерживают шестиприводный метод подключения. Оно потребует больше кабелей, однако это позволит подключать УПП к двигателю большей мощности.

     Также нужно учесть, что во время расчета вводного автомата для электродвигателя, который подключается к сети напрямую, учитываются номинальные токи, которые протекают в течение длительного времени, а также пусковые токи, длящиеся всего 2-3 секунды.

     Если же использовать УПП, то пусковые токи будут меньше, однако будут протекать минуту, а то и две. Автоматика может «подумать», что мотор выключен, а идущие токи, выше номинального в несколько раз, являются следствием аварии. В результате система будет отключена.

     Чтобы этого не случилось, нужно предусмотреть наличие специального автомата, который позволит устанавливать дополнительные режимы мягкого пуска, либо выбирать автоматику, показатели номинального тока которой соответствует пусковым токам во время работы устройства ПП.

     В остальном же порядок подключения устройств для обеспечения плавного запуска должен происходить в строгом соответствии с прилагаемой инструкцией. Причем, его сможет выполнять лишь квалифицированный специалист, имеющий определенный уровень допуска.

Устройства плавного пуска в Кирове

Плавный запуск электродвигателя и мягкая остановка способны многократно продлить его рабочий ресурс. В момент пуска двигателя возникает перегрев обмоток, образуются скачки тока и напряжения в электросети, а нагрузка подвержена механическому рывку. Во избежание этих последствий было разработано устройство плавного пуска, другое его название “софтстартер”. Данное устройство позволяет стабилизировать пусковые процессы, обеспечивая плавный разгон, а также остановку электродвигателя.

Известный факт, что двигатель, работающий напрямую от сети в момент пуска, потребляет ток превышающей номинальные значения в шесть раз. Высокие значения пусковых токов вызывают нагрев обмоток и повреждение изоляции, также образуется механический рывок который может повредить как сам двигатель, так и само устройство, с которым он работает.

Применение софтстартера поможет решить многие проблемы в эксплуатации электродвигателя. Для подбора устройства необходимо подробно изучить инструкцию, а именно основные программируемые параметры и схему подключения.

Чем чреват прямой пуск электродвигателя от электросети

  • перегрев обмоток и повреждение изоляции;
  • падение напряжения в электросети, срабатывание аварийной защиты;
  • механическое повреждение двигателя и ответного устройства в кинематической цепи;
  • гидроудар в системе водоснабжения.

Применение УПП позволяет избавиться от всех этих проблем, а также осуществлять контроль электрических параметров электродвигателя в процессе эксплуатации.

Мягкий пуск стартерного электродвигателя постоянного тока

При исследовании пусковых характеристик стартерных электродвигателей выявлено, что при подаче напряжения на электродвигателе возникает импульс обратного тока напряжением более 2000 вольт. Изоляция обмоток электродвигателей может не выдержать и получить межвитковый пробой. Искрение коллектора при больших пусковых токах ведёт к прогоранию пластин коллектора. Избежать пробоя и аварийной ситуации при пуске электродвигателя можно, используя метод разгона оборотов во времени.

Пусковой ток в данной схеме снижен до приемлемой величины с 220 ампер до 20. Условия мягкого пуска созданы двойным уровнем тока — первый создаётся регулировочной характеристикой полевого транзистора в течении времени 0-10 мс,второй — контактами пускового реле от 10 до 60 мс. Ток во время пускового режима растёт почти линейно, что не ведёт к разрушению электрической части электродвигателя.

Схема на рисунке представляет собой гибрид из мощного полевого транзистора и пускового реле.

Полевой транзистор после нажатия кнопки «Старт» открывается подачей напряжения с аккумулятора GB1 на затвор через резистор R1. Цепь, параллельная затвору транзистора и минусу аккумулятора защищает транзистор и несколько увеличивает время включения с 0,02 до 1 мс, зависящего от номиналов резисторов R1,R2 и конденсатора C1 — подаёт с ростом напряжения питание на пусковой электродвигатель М1. Электродвигатель разгонится до номинальных оборотов, в конце этого процесса замкнутся мощные контакты К1.1 реле К1, ток через полевой транзистор прекратится, а рабочий ток электродвигателя не создаст искрения контактов, так как режим разгона выполнен.

Размыкание цепи «Старт» приведёт к размыканию цепи К1.1 и обесточиванию электродвигателя, с понижением тока по экспоненте.

В цепь затвора полевого транзистора в схеме введен стабилитрон для защиты от превышения порогового напряжения, в цепи истока транзистора, параллельно пусковому электродвигателю подключена цепь для гашения импульсного напряжения обратной полярности –диод VD2 и конденсатор С2.

Обмотка реле К1 защищена от импульсов обратной полярности двухполярным светодиодом HL1 с разрядным резистором R4, резистор R3 ограничивает ток питания цепи обмотки, снижает ее нагрев при длительном включении. Диод VD3 устраняет проникновение импульсных помех в цепи питания.

В схеме нет дефицитных радиодеталей: полевые транзисторы установлены на суммарный рабочий ток в 212 ампер. Резисторы типа МЛТ-0,25, R3 на один ватт. Диоды VD2, VD3 импульсного типа. Реле автомобильное -типа MG16566DX на ток контактов 30 ампер и напряжение 12 вольт, напряжение включения такого реле 7 вольт, отпускания 3,5 вольта. Светодиод HL1 заменим на КИПД 45Б -2 или КИПД 23 А1-К, кнопка пуска типа КМ 1-1. В конструкции использовался стартерный электродвигатель итальянского производства, исследования проводились и на других типах электродвигателей мощностью от 10 до 300 ватт..

Конструкция собрана в корпусе размерами 110 * 35 *55 и закреплена рядом со стартером, кнопка пуска установлена в удобном для включения месте и соединена многожильным изолированным проводом сечением 0,5 мм. Полевые транзисторы закреплены общим болтом к радиатору.

Светодиод можно использовать как индикатор пуска или оставить на плате.

Силовые цепи питания электродвигателя необходимо выполнить многожильным проводом сечением не менее 10 мм и как можно короче по длине, для снижения потерь напряжения.

Схема проверена на стенде с указанным двигателем на 250 ватт, для надёжности установить два полевика в параллель, закрепив с двух сторон радиатора, пусковой ток тогда может достигать 220 ампер. Ток в 130 Ампер берёт от аккумулятора стартер а/м «Жигули» ВАЗ 2107.

Список радиоэлементов

ОбозначениеТипНоминалКоличествоПримечаниеМагазинМой блокнот
VT1MOSFET-транзисторIRL2505L1Поиск в магазине ОтронВ блокнот
VD1СтабилитронКС818Е1Поиск в магазине ОтронВ блокнот
VD2, VD3Выпрямительный диод 1N40032Поиск в магазине ОтронВ блокнот
HL1СветодиодL-57EGW1Поиск в магазине ОтронВ блокнот
C1Конденсатор0.1 мкФ1Поиск в магазине ОтронВ блокнот
C2Электролитический конденсатор100 мкФ1Поиск в магазине ОтронВ блокнот
R1Резистор 120 кОм1Поиск в магазине ОтронВ блокнот
R2Резистор 75 кОм1Поиск в магазине ОтронВ блокнот
R3Резистор 1 Ом1Поиск в магазине ОтронВ блокнот
R4Резистор 3.3 кОм1Поиск в магазине ОтронВ блокнот
K1Реле711.3747-021Поиск в магазине ОтронВ блокнот
M1ЭлектродвигательMG16566DX115В 250ВаттПоиск в магазине ОтронВ блокнот
SB1КнопкаКМ 1-11Поиск в магазине ОтронВ блокнот
GB1Аккумулятор7-60 А/Ч1Поиск в магазине ОтронВ блокнот
Добавить все

Меры профилактики

Хотя автомобили компании Renault сами по себе недорогие, а их обслуживание не требует больших финансовых затрат, неограниченного бюджета у владельцев точно нет. Ведь такие машины покупаются преимущественно исходя из соображения экономии и желания не тратить на автомобиль большие деньги.

Потому практически каждый владелец авто марки Renault, вне зависимости от конкретной модели, заинтересован в обеспечении длительной и стабильной работы климат-контроля при его наличии в комплектации.

Есть несколько мер и рекомендаций, соблюдение которых на Renault позволит предотвратить появление неисправностей, либо же максимально отдалить срок их возникновения.

  1. Не забывайте своевременно менять салонный фильтр. Он провоцирует проблемы в виде слабого обдува при работе климата на отопление и охлаждение. Также из-за него возникают неприятные запахи в салоне. При загрязнениях и повышении влажности фильтр может становится источником бактерий и микроорганизмов, которые проникают в дыхательные пути. Плюс изношенный фильтр повышает нагрузку на весь узел климат-контроля. Менять фильтрующий элемент следует не по регламенту, а по состоянию. При этом бывалые владельцы автомобилей Renault советуют делать это не реже 1 раза в год и не позже чем через 5-10 тысяч километров пробега.
  2. Когда на улице холодно, то есть в охлаждении салона нет необходимости, всё равно переводите климат-контроль в режим охлаждения. Достаточно 1-2 включений на 5-10 минут. Это позволит поддерживать в оптимальном состоянии ряд узлов, смазывать уплотнители вала компрессора, прокладки и кольца. Длительный простой без работы провоцирует возникновение проблем именно тогда, когда водителю Renault потребуется охладить салон.
  3. Запуская зимой охлаждение салона, делайте это обязательно после того, как салон прогрелся. Это позволит обеспечить корректную работу всех датчиков.
  4. Выполняя мойку автомобиля, не поленитесь продуть и промыть конденсатор. Делать это нужно предельно аккуратно, поскольку есть риск деформировать рёбра ячеек.
  5. Периодически чистите испаритель. Это зачастую не сложно делать в процессе замены фильтра салона. Существуют специальные очистители в виде аэрозольных баллончиков. Работают эффективно, применяются предельно просто.
  6. Используйте только качественные антифризы, соответствующие требованиям автопроизводителя и установленного на Renault радиатора печки и системы охлаждения двигателя. Это позволит избежать закупоривания каналов, а также образования утечек ОЖ. Также вовремя меняйте антифриз, следите за его текущим состоянием.
  7. Поскольку на Renault приходится периодически дозаправлять фреон, делать это лучше на специализированных СТО. Тут требуется хорошее профессиональное оборудование и определённые навыки. Делая это в гаражных условиях или кустарным методом через сомнительные сервисы, вы рискуете столкнуться с неприятными последствиями неправильной заправки. Плюс не последнюю роль играет качество самого хладагента.

Учитывая всё рассмотренное ранее, климат-контроль на автомобилях Renault является хорошим решением для создания оптимальных условий внутри машины. Но порой возникают некоторые неисправности.

Если соблюдать правила эксплуатации, ухаживать за системой контроля климатом, вовремя менять расходники и проводить профилактические мероприятия, всех этих проблем удастся избежать. И тогда климат на вашем Renault будет работать долго и стабильно.

Для чего нужен плавный пуск?

Казалось бы, все правильно, да и оборудование на это рассчитано. Вот только всегда есть «но». В нашем случае их несколько:

в момент запуска электродвигателя, ток питания может превышать номинальный в четыре с половиной-пять раз, что приводит к значительному нагреву обмоток, а это не очень хорошо;
старт двигателя прямым включением приводит к рывкам, которые в первую очередь влияют на плотность тех же обмоток, увеличивая трение проводников во время работы, ускоряет разрушение их изоляции и, со временем, может привести к межвитковому замыканию;
вышеупомянутые рывки и вибрация передаются на весь приводимый в движение агрегат. Это уже совсем нездорово, потому что может привести к повреждению его движущихся элементов: систем зубчатых передач, приводных ремней, конвейерных лент или просто представьте себя едущим в дёргающемся лифте. В случае насосов и вентиляторов — это риск деформации и разрушения турбин и лопастей;
не стоит также забывать об изделиях, возможно находящихся на производственной линии

Они могут упасть, рассыпаться или разбиться из-за такого рывка;
ну, и наверно, последний из моментов, заслуживающих внимание — стоимость эксплуатации такого оборудования. Речь идёт не только о дорогостоящих ремонтах, связанных с частыми критическими нагрузками, но и об ощутимом количестве не эффективно израсходованной электроэнергии.. Казалось бы, все вышеперечисленные сложности эксплуатации присущи лишь мощному и громоздкому промышленному оборудованию, однако, это не так

Все это может стать головной болью любого среднестатистического обывателя. В первую очередь это касается электроинструмента

Казалось бы, все вышеперечисленные сложности эксплуатации присущи лишь мощному и громоздкому промышленному оборудованию, однако, это не так. Все это может стать головной болью любого среднестатистического обывателя. В первую очередь это касается электроинструмента.

Специфика применения таких агрегатов, как электролобзики, дрели, болгарки и им подобных, предполагают многократные циклы запуска и остановки, в течение относительно небольшого промежутка времени. Такой режим эксплуатации, в той же мере, влияет на их долговечность и энергопотребление, как и у их промышленных собратьев. При всем этом не стоит забывать, что системы плавного запуска не могут регулировать рабочие обороты мотора или реверсировать их направление. Также невозможно увеличить пусковой момент или снизить ток ниже, чем требуется для начала вращения ротора электродвигателя.

Необходимость плавного запуска

При плавном запуске асинхронного двигателя возможно снизить недостатки таких электрических машин и обеспечить:

  • Снижение затрат на ремонт. Пусковые токи вызывают перегрев обмотки, что существенно снижает эксплуатационный ресурс машин.
  • Отсутствие рывков. Резкий старт двигателя приводит к увеличению износа шестеренчатых передаточных механизмов, гидроударам в сети подачи жидкости, другим нежелательным последствиям.
  • Снижение потребляемой электроэнергии. Прямой пуск вызывает дополнительные энергозатраты. Кроме того, просадки напряжения в условиях ограниченной мощности сети отрицательно влияют на все подключенные устройства.
  • Уменьшение расходов на оборудование коммутации. Электротехнические устройства для асинхронного привода выбирают с большим запасом мощности. Плавный пуск позволяет подключать более дешевые аппараты коммутации и защиты.

Плавный старт и разгон существенно расширяет сферы применения асинхронных электродвигателей.

Прямой запуск

В электросхеме прямого пуска машина непосредственно подключена к сетевому напряжению питания.

На схеме выше показана характеристика пускового тока при прямом старте.  При таком подключении повышение температуры в обмотках машины минимальное.

Подключение осуществляется с помощью контактора (пускателя). В схеме применяется реле перегрузки для защиты электродвигателя. Однако такой метод применим, когда нет ограничений по току.

Во время старта машины пусковой момент ограничивают, чтобы сгладить резкий рывок, вследствие которого могут выйти из строя механические части привода и подсоединенные механизмы.

По этой причине производители крупных электродвигателей запрещают их прямой пуск.

Принцип действия механизма

     Стартсофтеры – это еще одно название подобных систем, калька с их английского наименования. Они бывают двух типов, которые отличаются по способу действия и особенностям функционирования. Это электрические и механические УПП.

     Механический способ регулирования является более простым, поскольку в его основе лежит несложное действие – он принудительно сдерживает нарастающую скорость вращения при запуске, чтобы не дать образоваться слишком большой нагрузке. Для этого применяются различные детали и механизмы, которые воздействуют механическим путем, помогая регулировать работу и получать нужные параметры. Конечно, каждый из этих вариантов обладает своими особенностями и характерными принципами работы, но выполняют они одну и ту же задачу.  

     Представить способ механического воздействия достаточно легко. Если вращающегося диска коснуться каким-либо предметом, скорость движения замедлится, поскольку возникнет сила трения, направленная в противоположную сторону. Элементу нужно будет больше времени, чтобы разогнаться, и такой процесс будет происходить более плавно. Вот так действуют механические регуляторы.

     У электрических регуляторов принцип действия сложнее, там работа осуществляется за счет специальных элементов в электрической цепи, которые ограничивают подачу напряжения. Чтобы разобраться, как именно и по какому типу работает УПП с таким принципом, нужно внимательно изучить сам процесс. Это момент, когда электроэнергия преобразуется в кинетическую, из-за чего и происходит начало работы мотора. Также в это время сопротивление увеличивается – от малых показателей к максимальным. И уровень тока по своей силе действия максимален, о чем говорит закон Ома. Это значит, что поступающая энергия в такой момент, согласно закону, должна передаваться с большой скоростью. А если подключить двигатель с использованием специального стартсофтера, то в действие вступает вторая формула этого закона, в итоге энергия передается по-прежнему с таким же уровнем, быстро, но выходит уже иначе, медленно, поскольку напряжение ограничивается. Чем меньше будет имеющаяся сила тока, тем больший промежуток времени потребуется агрегату на разгон, и при этом он будет плавным.

Выбор УПП

Выбор софт-стартера делается при проектировании или модернизации электропривода. При этом учитываются требования к оборудованию, характеристики электросети и другие условия. Главными критериями являются:

  • Ток, напряжение и мощность электрической машины. Необходимо чтобы максимально возможный ток при пуске не превышал предельную величину тока УПП. Напряжение и мощность устройства должны соответствовать характеристикам двигателя.
  • Количество стартов и остановок. Этот параметр указан в технической документации УПП, он должен отвечать условиям работы электропривода.
  • Величина пускового момента. Интервал настраиваемых значений должен включать необходимую величину допустимого момента при запуске оборудования.
  • Электромагнитная совместимость. Все электрооборудование привода должно иметь одинаковый класс ЭМС.
  • Допустимое время разгона и торможение двигателя.

При выборе также принимаются во внимание наличие функций динамического торможения, защиты от ненормальных режимов работы, поддерживаемые интерфейсы связи

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий