Применение защитного зануления
В отличие от заземления, защитное зануление заключается в преднамеренном электрическом соединении тех частей электроустановок, которые нормально не находятся под напряжением. У них имеется глухозаземленная нейтраль и нулевой провод.
При замыкании на корпус установки какой-либо фазы, возникает короткое замыкание этой фазы и нулевого провода. Величина тока, в этом случае, значительно возрастает по сравнению с обычным защитным заземлением. Поврежденное оборудование быстро и полностью отключается, что и является главной целью зануления.
Существует два проводника, выполняющих различные функции. Роль нулевого рабочего проводника состоит в питании электроустановок. В нем такая же изоляция, как и в других проводах, через его сечение свободно проходит рабочий ток. Основным назначением нулевого защитного проводника является создание короткого замыкания на кратковременный период. При этом, происходит быстрое отключение, обеспечивающее защиту электроустановок.
Таким образом, заземление и зануление электроустановок позволяет не только надежно защитить их, но и уберечь от поражения электрическим током.
Заземление и зануление электроустановок
Что такое заземление
Чем отличается заземление от зануления
Заземление электроустановок
Заземления и зануления – в чем разница
Зануление вместо заземления можно ли использовать
Что такое заземление: как устроено, принцип работы и преимущества такой защиты
Принцип работы заземления в том, чтобы не допустить прохождения электрического тока через тело человека, если в силу каких-либо обстоятельств корпус электроприбора окажется под напряжением. Такое может случиться при повреждении изоляции жил кабеля. Рассмотрим пример. Жила с поврежденной изоляцией соприкасается с металлическим корпусом микроволновой печи. Хозяйка, готовя пищу на кухне, прикасается к электроприбору, который не заземлен. Это приводит к тому, что ток устремляется к земле, используя человеческое тело, как проводник. Итог может быть самым плачевным, вплоть до летального исхода.
Неисправная электропроводка приводит к возникновению напряжения на корпусе бытовых приборов
Теперь разберем для чего нужно заземление, как оно работает. Тот же пример, но уже с использованием защиты. Требования к заземлению применяются самые жесткие. При замерах сопротивление контура должно практически отсутствовать, что позволяет току беспрепятственно уходить в землю по шине. Законы физики не дают напряжению протекать через человеческое тело, которое имеет свое сопротивление. У одних оно больше, у других меньше, но наличие его не оспаривается. Получается, что ток утекает по пути наименьшего сопротивления, через заземлитель. Если при этом в схему включено УЗО, оно определит утечку и отключит подачу электроэнергии на прибор.
Устройство защитного отключения (УЗО) срабатывает при малейшей утечке тока
38 Зануление, схема, устройство и принцип работы.
Зануление — преднамеренное электрическое соединение с нулевым защитным проводником металлических нетоковедущих частей электрооборудования, которые могут оказаться под напряжением (ГОСТ 12.1.009).
Задача зануления – устранение опасности поражения током в случае прикосновения к корпусу и другим нетоковедущим металлическим частям электроустановки, оказавшимся под напряжением вследствие замыкания на корпус.
При занулении, если оно надежно выполнено всякое замыкание на корпус превращается в однофазное короткое замыкание (т.е. замыкание между фазами и нулевым проводом). При этом возникает ток такой силы, достаточной для расплавления плавкой вставки ближайшего предохранителя или отключения ближайшего автомата и автоматическое отключение поврежденной установки от сети. Зануление превращает замыкание на корпус в однофазное короткое замыкание, в результате чего срабатывает максимально-токовая защита и отключает электроустановку. В качестве максимально-токовой защиты применяют предохранители, автоматы. Область применения зануления — трехфазные четырехпроводные сети с глухозаземленной нейтралью источника тока (рис. 1).
1 – корпус электрооборудования; 2 – максимально-токовая защита; Rо – сопротивление заземления нейтрали источника тока; Rn – сопротивление повторного заземления нулевого защитного проводника.
Кроме того, защитное заземление применяют в трехфазных сетях с изолированной нейтралью, а не в четырехпооводных сетях с глухозаземпенной нейтралью, как зануление.
39 Защитное отключение, схема, назначение и область его применения.
Защитное отключение – это быстродействующая щита, обеспечивающая автоматическое отключение электроустановки при возникновении в ней опасности поражения человека электрическим током.
Защитное отключение должно осуществлять защиту от глухих или неполных замыканий на землю или корпус; при появлении опасных токов утечки; при переходе высшего напряжения на низшее.
Устройства защитного отключения должны обладать высокой чувствительностью, малым временем отключения (ПУЭ требует, чтобы это время не превышало 0,2 с), самоконтроль и надежность.
Наиболее целесообразно применять защитное отключение в передвижных электроустановках и при использовании ручного инструмента.
Зануление обеспечивает отключение поврежденного участка сети или электроприемника лишь через период времени, измеряемый единицами или десятками секунд. Защитное отключение применяется в электроустановках с глухозаземленной нейтралью напряжением до 1000В в дополнение к занулению; взамен зануления, если его трудно выполнить.
Схемы защитного отключения подразделяются на несколько типов в зависимости от параметра, на который реагирует датчик: напряжение корпуса относительно земли, тока замыкания на землю, напряжения нулевой последовательности, напряжения фаз относительно земли и т.п.
На рис.1 представлена принципиальная схема защитного заземления, реагирующая на напряжение корпуса относительно земли.
Датчиком является реле максимального напряжения RЗ, включенное между защитным корпусом и вспомогательным заземлителем Rв. Электроды вспомогательного заземлителя размещаются в зоне нулевого потенциала не ближе 15-20 м от заземлителя корпуса Rв или заземлителей нулевого провода. При пробое фазы на корпус на нем появляется напряжение относительно земли, при напряжении 20-60 В срабатывает реле напряжения RЗ и разрывает цепь катушки управления ОК. Сердечник этой катушки освободится и разомкнет контакты автоматического выключателя АВ. Схема отличается простотой, но требует вспомогательного заземлителя.
Защитное отключение может применяться как основная мера защиты совместно с защитным заземлением или занулением.
Методы определения
Существует 7 способов отличить ноль от земли. Одни методы простые и предполагают визуальный осмотр, другие требуют применения специального оборудования и считаются более точными. Зная, как определить нулевой проводник и заземляющий, можно избежать травм, связанных с поражением электрическим током.
По маркировке
Для удобства работы электриков введена цветовая маркировка проводов, которая позволяет визуально их различать при проведении монтажных работ.
Согласно общепринятым правилам:
- желто-зеленую полосатую жилу используют для заземления;
- синяя и голубая оболочки служат для маркировки нулевого провода;
- белые, коричневые, красные и др. цвета применяют для обозначения фазы.
По дифференциальному току
Данный способ можно использовать при наличии устройства защитного отключения (УЗО) или дифференциального автомата. Для исследования понадобится лампа с проводами, которую подключают к фазе и одному из проводников.
Если устройство защитного отключения не сработало в обоих случаях, то причинами могут быть:
- поломка оборудования;
- несоответствие силы тока, пропускаемого через лампу, номинальному значению УЗО, при котором оно должно обесточить сеть.
По заземляющим контактам на розетках
Данный вариант проверки применяют при использовании двухполюсного вводного автомата и заземляющих розеток. Для проведения исследования автомат отключают, чтобы не было связи между нолем и землей, обесточивают все бытовые приборы. В мультиметре активизируют режим «Прозвонка» и подсоединяют прибор к заземляющему контакту и поочередно к двум другим проводам.
При подключении к нулевому проводнику на мультиметре фиксируется большое сопротивление. Если дотронуться щупом мультиметра к заземляющей жиле, то значение будет близким к нулю.
С помощью мультиметра
Для проведения проверки следует зачистить проводку от изоляции, предварительно обесточив сеть на объекте. С помощью индикаторной отвертки определяют кабель с фазой.
На мультиметре устанавливают диапазон замера переменного напряжения выше 220 вольт. Поочередно фазу соединяют через мультиметр с 2 другими проводами. На паре «фаза – ноль» напряжение будет выше, чем на проводах фаза – земля.
Данный способ используют для проверки старых электросетей, сделанных по конфигурации ТТ. В современных схемах организации электроснабжения его применять не следует .
В TN–C–S нулевой и заземляющий провода разделены внутри здания. У них одинаковое сопротивление, поэтому на мультиметре будет отображаться одинаковая разница потенциалов.
Отключение нулевого провода
Предварительно все электроприборы нужно отключить от сети. В распределительном щитке отсоединяют нулевой проводник (откручивают зажимы, вытаскивают кабель из автомата и изолируют).
Определяют жилу с фазой с помощью индикаторной отвертки. Мультиметр прикладывают к проводам. Прибор будет показывать напряжение только в паре «фаза – земля», т. к. ноль отключен от щитка.
Прозвонка
Способ применяют при поиске мест обрыва проводки, если известно расположение заземляющего и нулевого проводников на одном из концов, например в распределительном щитке.
На другом конце определяют провод с фазой и маркируют его. Затем сеть обесточивают. Один щуп мультиметра подключают к фазе, второй – поочередно к другим жилам. При соединении с нулем на приборе отражается большое сопротивление, с землей — близкое к 0.
Контрольной лампой
В современной трехжильной электрической сети можно определить назначение проводов с помощью контрольной лампы
Данный способ требует соблюдения осторожности
Порядок действий:
- Первоначально собирают устройство: в патрон вкручивают лампу, в клеммы патрона заводят кабель, зачищают изоляцию на концах.
- Устройство поочередно соединяют с электропроводами. На паре с фазой вспыхнет свет.
- На паре «ноль – земля» лампа гореть не будет.
- Подключая лампочку к фазе и другим электропроводам, можно методом исключения выявить их предназначение. Если лампа ненадолго вспыхнет, а затем сработает УЗО или автомат защиты, то проверяемые кабели – это фаза и земля, а свободный – ноль.
Принцип действия механизма
Наглядно объяснить действие зануления поможет представление следующей ситуации. Фаза основной питающей сети попадает на корпус электрического оборудования, что может произойти из-за пробоя изоляции или любого другого форс-мажорного обстоятельства. Если при этом токопроводящая часть устройства имеет организованное защитное зануление, произойдёт короткое замыкание.
В этом случае величина тока за долю секунды достигнет своего максимального значения и сработает система автоматической защиты. В ряде случаев может выгореть предохранитель. Само оборудование или бытовая техника будут обесточены. Это защитит человека от серьёзных поражений электричеством и станет препятствием к возникновению любых других негативных последствий.
Обязательное условие работы механизма — очень низкое значение сопротивления току у нейтрального проводника. Именно в этой ситуации ток замыкания поднимется до максимального, что станет причиной срабатывания защитной сетевой системы. Так как нейтраль обеспечен полным заземлением на трансформаторе или генераторе, зануление организует при прикосновении низкое напряжение на корпусе используемого прибора.
Схемы и системы защитного зануления
Выделяется несколько вариантов защиты оборудования при помощи механизма зануления металлических корпусов. Базовое рассмотрение предполагает изучение подключений к однофазной и трехфазной сети подачи энергии.
- Трехфазная сеть. Характеризуется простой схемой подключения, выполнить которую под силу каждому, кто знаком с элементарными основами электротехники. В этом случае защитная линия P E и нулевой провод N объединяются в единую шину — PEN. Подобная методика зануления носит название TN — C системы. Для реализации метода требуется тщательно соблюдать требования, предъявляемые к уравниванию электрических потенциалов и к площадям сечения объединённых проводников PEN. Правилами устройства электроустановок категорически запрещено использование системы для сети с подачей энергии по однофазной схеме.
- Однофазная сеть. Система TN — C — S существует для реализации зануления в 1-фазной сети. Согласно методу, линия PE и проводник N объединяются только в условиях ограничения участка подачи энергии, который начинается вблизи основного источника питания. Существующая система великолепно подходит однофазным сетям, но её использование при занулении электрического оборудования, функционирующего в трехфазной сети электрификации, недопустимо.
После того как будут выполнены работы по защите оборудования, требуется провести расчёт и проверку системы зануления. Работа предполагает использование специальных приборов и техники, поэтому доверить её следует только квалифицированному специалисту. После произведения замеров следует определить среднее сопротивление петли нейтраль-фаза. Его значение должно быть минимальным.
Оптимальное значение параметра должно превышать порог срабатывания автоматической системы обесточивания. В обратной ситуации потребуется их смена на технику с меньшими значениями порога срабатывания. Возможно выполнение мероприятий по понижению сопротивления петли нетраль-фаза.
Объясните назначение и принцип действия защитного заземления( со схемами)
Защитное заземление – преднамеренное электрическое соединение с землей или её эквивалентом металлических нетоковедущих частей, которые могут оказаться под напряжением.
Назначение защитного заземления – устранение опасности поражения людей электрическим током при появлении напряжения на конструктивных частях электрооборудования, т.е. при замыкании на корпус.
Принцип действия защитного заземления – снижение до безопасных значений напряжений прикосновения и шага, обусловленных замыканием на корпус. Это достигается уменьшением потенциала заземленного оборудования, а также выравниванием потенциалов за счет подъема потенциала основания, на котором стоит человек, до потенциала, близкого по назначению к потенциалу заземленного оборудования.
Область применения защитного заземления – трехфазные трехпроводные сети напряжением до 1000В с изолированной нейтралью и выше 1000В с любым режимом нейтрали.
Рис.1 Принципиальные схемы защитного заземления:
а – в сети с изолированной нейтралью до 1000В и выше
б – в сети с заземленной нейтралью выше 1000В
1 – заземленное оборудование;
2 – заземлитель защитного заземления
3 – заземлитель рабочего заземления
rв и rо – сопротивления соответственно защитного и рабочего заземлений
Iв – ток замыкания на землю
Заземляющим устройством называется совокупность заземлителя – металлических проводников, находящихся в непосредственном соприкосновении с землей, и заземляющих проводников, соединяющих заземляемые части электроустановки с заземлителем. Различают два типа заземляющих устройств: выносное и контурное.
Выносное заземляющее устройство характеризуется тем, что заземлитель его вынесен за пределы площадки, на которой размещено заземляемое оборудование, или сосредоточен на некоторой части этой площадки.
Данный тип заземляющего устройства применяют лишь при малых значениях тока замыкания на землю и, в частности, в установках напряжением до 1000В, где потенциал заземлителя не превышает допустимого напряжения прикосновения. Преимуществом такого типа заземляющего устройства является возможность выбора места размещения электродов с наименьшим сопротивлением грунта.
Контурное заземляющее устройство характеризуется тем, что его одиночные заземлители размещают по контуру площадки, на которой находится заземляемое оборудование, или распределяют по всей площадке по возможности равномерно.
Безопасность при контурном заземлителе обеспечивается выравниванием потенциала на защищаемой территории путем соответствующего размещения одиночных заземлителей.
Внутри помещений выравнивание потенциала происходит естественным путем через металлические конструкции, трубопроводу, кабели и подобные им проводящие предметы, связанные с разветвленной сетью заземления.
Защитному заземлению подлежат металлические нетоковедущие части оборудования, которые из-за неисправности изоляции могут оказаться под напряжением и к которым возможно прикосновение людей. При этом в помещениях с повышенной опасностью и особо опасных по условиям поражения током, а также в наружных установках заземление является обязательным при номинальном напряжении электроустановки выше 42В переменного и выше 110В постоянного тока, а в помещениях без повышенной опасности – при напряжении 380В и выше переменного и 440В и выше постоянного тока. Лишь во взрывоопасных помещениях заземление выполняется независимо от назначения установки.
Различают заземлители искусственные, предназначенные исключительно для целей заземления, и естественные – находящиеся в земле металлические предметы для иных целей.
Для искусственных заземлителей применяют вертикальные и горизонтальные электроды. В качестве вертикальных электродов используют стальные трубы диаметром 3…5см и стальные уголки размером от 40*60 до 60*60мм и длиной 2,5…,м.
В качестве естественных заземлителей можно использовать: проложенные в земле водопроводные и другие металлические трубопроводы, за исключением трубопроводов горючих жидкостей, горючих или взрывоопасных газов, а также трубопроводов, покрытых изоляцией для защиты от коррозии. Естественные заземлители обладают, как правило, малым сопротивлением растеканию тока, и поэтому использование их для целей заземления дает большую экономую. Недостатками естественных заземлителей является доступность их неэлектротехническому персоналу и возможность нарушения непрерывности соединения протяженных заземлителей.
Как определить сопротивление петли «фаза-нуль»
Требования, содержащиеся в правилах ПТЭЭП, предписывают постоянный контроль состояния ЗУ, обеспечивающих безопасность эксплуатации бытового и промышленного электрооборудования. Согласно этим нормативам в системах до 1000 Вольт с заземленной наглухо нейтралью они обязательно проверяются на одиночное фазное замыкание. Используемые методики испытаний, прежде всего, опираются на техническую базу, представленную образцами измерительных приборов специального назначения.
Измерительная аппаратура
Для проверки сопротивления контурной цепочки замыкания «фаза нуль» традиционно применяются электронные приборы, отличающиеся малой погрешностью измерений. К наиболее известным образцам измерительной техники этого класса относят:
- Измерители марок М 417 и MSC 300, позволяющие определять проводимость контролируемых цепей (на основании полученных результатов токи КЗ в грунт вычисляются по специальным формулам).
- Прибор ЭКО-200, предназначенный исключительно для определения токов КЗ. Устройство ЭКЗ-01, используемое точно так же как и ЭКО-200.
- Измерительный прибор марки ИФН-200.
М417 допускается применять при организации и проведении измерений в трехфазных цепях с заземленным наглухо нулем (в этом случае снятия питающего напряжения не требуется). В ходе испытаний используется метод падения напряжения при размыкании контролируемой цепи на время порядка 0,3 секунды. К неудобствам работы с этим прибором относят обязательность его калибровки перед началом каждого нового измерения.
Измеритель сопротивления цепи фаза-нуль марки М 417
Изделие MSC300 – это более совершенное техническое устройство, оснащенное сложной электронной начинкой в виде современных микропроцессорных чипов. При работе с этим прибором применяется метод снижения потенциала при включении в измеряемую цепь сопротивления величиной 10 Ом. Рабочее напряжение варьируется в границах от 180 до 250 Вольт, а время замера искомого параметра составляет около 0,03 секунды. При проведении замеров он подсоединяется к контролируемой линии в самой удаленной точке, а для начала работы с ним потребуется нажать кнопку «Старт». С результатами измерений можно ознакомиться после вывода их на встроенный цифровой дисплей.
MZC-300 измеритель параметров сетей электропитания зданий и сооружений
В ситуации, когда в распоряжении пользователя не оказалось ни одного образца специальной измерительной техники – для практического определения сопротивления петли «фаза-нуль» могут применяться типовые вольтметр и амперметр. Требуемый результат находится по простейшей формуле, знакомой многим еще по школьному курсу физики.
Монтаж
Итак, перейдем непосредственно к описанию того, как выполнить заземление в частном, загородном доме или на даче своими руками. Для самостоятельной сборки заземляющего контура в загородном доме, садовом участке или на даче нам понадобится стальной уголок, прут или труба, а для стержней – оцинкованные электроды. Иногда вместо них применяют электропроводной бетон.
Забивание стержня.
Как уже было сказано, для забивания стержней модульные системы комплектуются специальными коническими наконечниками, облегчающими прохождение штыря в земле.
Забивать их можно и вручную – с помощью кувалды или молота, а также инструментом – необходим ударный перфоратор или отбойный молоток с силой удара примерно 20 Дж и специальной головкой. В модульных системах соединения электродов и заземляющим проводником выполняются с помощью специальных зажимов. При самостоятельном монтаже можно просто сварить их между собой.
Подсоединение заземления с помощью хомута.
Обратите внимание, что покраска, смазка или какая-либо другая консервация заземлителей запрещена – это снижает их проводимость. Учитывая негативное воздействие коррозии, приводящее к постепенному утончению стержней, необходимо брать прутья с небольшим запасом
Эти размеры указаны в ПУЭ (Правила Устройства Электроустановок) и составляют 6 мм в диаметре — для оцинкованного прута, 10 мм – для прута из черного металла, 48 мм2 (площадь в поперечнике) — для проката с прямоугольным сечением. Стенки труб и полок прямоугольной стали должны иметь толщину не меньше 4 мм.
Увлажнение грунта.
Для соединения электродов между собой можно также использовать пруты, трубы и уголок. С помощью них заземление прокладывается от контура до распределительного электрощита. Размеры данных материалов также имеют определенные нормативы. Прутья должны быть в толщину не менее 5 мм, площадь сечения прямоугольной стали – от 24 мм2, с толщиной стенок не меньше 2,5 мм.
Безусловно, монтаж заземления потребует прокладывать заземляющие провода непосредственно по частному дому, даче или другому зданию, электробезопасность которого требуется осуществить. К внутренним заземляющим проводам также выдвигают специальные требования – их сечение должно быть равным площади сечения фазной жилы, но больше нормативного минимума (диаметр поперечника):
- 1,5 мм – для изолированного медного;
- 2,5 – для изолированного алюминиевого;
- 4 мм – для медного без изоляции;
- 6 мм – для алюминиевого без изоляции.
Коммутация всех проводников заземления с контуром должна проводиться с помощью специальной PE (Protection Earth) шины из электротехнической бронзы, которая должна быть установлена в электрощитке.
Пример щитка заземления
Одной из самых распространенных ошибок, совершаемых при подключении электроприборов к заземляющему контуру своими руками, является нарушения порядки их подсоединения
Обратите внимание, что оно должно всегда проводиться параллельно – от каждого устройства на щиток должен идти отдельный заземляющий провод
Соединение в одной точке в доме.
Соединение в одной точке у заземления.
Присоединение к шине.
При последовательном подключении или подключении на одну площадку шины, аварийные устройства будут «тянуть», создавая таким образом помехи. Такое нарушение правил подключения электроприборов называется электромагнитной несовместимостью. Из-за нее возникает высокая опасность для жизни во время устранения аварии.
Необходимые сведения для самостоятельного расчета заземления
Фундаментальные требования, которых необходимо придерживаться при изготовлении заземляющих конструкций — это размеры металлических элементов. В зависимости от применяемого материала (уголка, полосы, арматуры/прутка) минимальные показатели элементов должны быть не меньше:
- Полоса 12х4 – 4,8 см2;
- Уголок 4х4;
- Арматура/пруток – диаметр от 1,0 см;
- Труба (толщина стенки) – 3,5 мм.
Наименьшие размеры металлических элементов, из которых монтируются заземляющие контуры
- Длина заземляющего элемента должна быть не менее 1,5 – 2 м.
- Интервал между металлическими элементами контура берется из соотношения их метража, то есть: a = 1хL; a = 2хL; a = 3хL.
В зависимости от имеющейся на участке площадки и возможности проведения монтажных работ, заземляющие элементы контура можно устанавливать любым способом: в ряд, или другим методом (треугольником, квадратом и т.п.). Для точности вычислений необходимо знать удельные показатели сопротивляемости различных видов почвы и водной среды. Таблица № 1 Показатели (приблизительные) удельных сопротивлений грунтов и воды p, Ом•м
Наименование почвы/водной среды | Удельное сопротивление, Ом•м |
Песок | 700 |
Супесок | 300 |
Суглинок | 100 |
Глина | 40 |
Почва на приусадебных участках | 40 |
Глина (слой 7-10 м) или гравий | 70 |
Мергель, известняк, крупный песок с валунами | 1000-2000 |
Скальная порода | 2000-4000 |
Чернозём | 20 |
Торф | 20 |
Вода в реках, протекающих по равнинам | 10-100 |
Морская вода | 0,2-1 |