Как измерить емкость конденсатора своими руками

↑ Мой вариант схемы измерителя ESR

Я внес минимальные изменения.

Корпус — от неисправного «электронного дросселя» для галогеновых ламп. Питание — батарея «Крона» 9 Вольт и стабилизатор78L05 . Убрал переключатель — измерять LowESR в диапазоне до 200 Ом надо очень редко (если приспичит, использую параллельное подключение). Изменил некоторые детали. Микросхема74HC132N , транзисторы2N7000 (to92) иIRLML2502 (sot23). Из-за увеличения напряжения с 3 до 5 Вольт отпала необходимость подбора транзисторов.При испытаниях устройство нормально работало при напряжении батареи свежей 9,6 В до полностью разряженной 6 В. Кроме того, для удобства, использовал smd-резисторы. Все smd-элементы прекрасно паяются паяльником ЭПСН-25. Вместо последовательного соединения R6R7 я использовал параллельное соединение — так удобнее, на плате я предусмотрел подключение переменного резистора параллельно R6 для подстройки нуля, но оказалось, что «нуль» стабилен во всем диапазоне указанных мною напряжений.

Удивление вызвало то, что в конструкции «разработанной в журнале» перепутана полярность подключения VT1

— перепутаны сток и исток (поправьте, если я неправ). Знаю, что транзисторы будут работать и при таком включении, но для редакторов такие ошибки недопустимы.

Устройство конденсатора

Простейший конденсатор состоит из двух металлических пластин (обкладок), разделенных слоем диэлектрика. Емкость (способность накапливать электрический заряд) увеличивается с ростом площади пластин и с уменьшением толщины изолирующего слоя.

Параметры простейшей конструкции слишком малы. Для ее увеличения есть два пути:

  • Увеличение площади обкладок, что приводит к увеличению габаритов.
  • Уменьшение толщины диэлектрика, приводящее к снижению номинального рабочего напряжения из-за электрического пробоя.

Вам это будет интересно Особенности обозначения радиодеталей на схеме

Для того, чтобы избежать перечисленных проблем, разработаны специальные конструкции. Например, если сделать обкладки небольшой ширины и большой длины, их можно вместе с гибким диэлектриком свернуть в плотный цилиндр, получится цилиндрический конденсатор. Размещая пластины с диэлектриком попеременно, в виде слоеного пирога и чередуя подключение к выводам, получается прямоугольный компонент с большой эффективной площадью обкладок.


Разные типы конструкции

Еще один путь — использование в качестве диэлектрика тонкого оксидного слоя на поверхности металлической фольги и раствора проводящего электролита в качестве второй обкладки. Таким образом получается электролитический конденсатор, конструкция которого обладает самой большой емкостью.

Важно! Такие устройства имеют недостаток — соблюдение полярности подключения, что ограничивает их применение: оно возможно только в цепях постоянного тока в качестве сглаживающих фильтров

Устройство электролитических и твердотельных конденсаторов

Радиокомпоненты такого класса применяются в электронных устройствах с высокими требованиями по габаритам. Поэтому вопрос компромисса между площадью обкладок (от этого зависит емкость) и размерами корпуса — головная боль разработчиков. Проблема решается технологически просто:

Изготавливается так называемых сэндвич, стоящий из двух тончайших обкладок, между которыми прокладывается слой пропитанной электролитом бумаги (в электролитических моделях) или токопроводящий полимер (твердотельные конденсаторы). Обычно используется танталовая или алюминиевая фольга. В качестве диэлектрика применяется естественный оксидный слой одной из пластин. У него низкая проводимость, которая определяет ток утечки емкости.

Такая конструкция может занимать достаточно большую (по меркам радиодеталей) емкость. Поэтому ее сворачивают в плотный рулон, где в качестве разделителя между слоями выступает тонкая электро-бумага (смотрим иллюстрацию). Она не участвует в схеме работы конденсатора.

Наружная оболочка выполнена из алюминия, на нее наносится информация о характеристиках.

Схема измерения

Для определения ёмкости неизвестного конденсатора следует включить его в цепь из резистора и источника питания. Входное напряжение выбирается несколько меньшим номинального напряжения конденсатора, если оно неизвестно — достаточно будет 10–12 вольт. Ещё необходим секундомер. Для исключения влияния внутреннего сопротивления источника питания на параметры цепи, на входе надо установить выключатель.

Сопротивление подбирается экспериментально, больше для удобства отсчёта времени, в большинстве случаев в пределах пяти — десяти килоом. Напряжение на конденсаторе контролируется вольтметром. Время отсчитывается с момента включения питания — при зарядке и выключении, если контролируется разряд. Имея известные величины сопротивления и времени, по формуле t = RC вычисляется ёмкость.

Удобнее отсчитывать время разрядки конденсатора и отмечать значения в 90 % или 95 % от начального напряжения, в этом случае расчёт ведётся по формулам 2.2t = 2.2RC и 3t = 3RC. Таким способом можно узнать ёмкость электролитических конденсаторов с точностью, определяемой погрешностями измерений времени, напряжения и сопротивления. Применение его для керамических и других малой ёмкости, с использованием трансформатора 50 Hz, вычислением емкостного сопротивления — даёт непрогнозируемую погрешность.

Самодельный С — метр

Не принимая во внимание разные экзотические решения, такие как баллистический гальванометр и мостовые схемы с магазином сопротивлений, изготовить простой прибор или приставку к мультиметру по силам и начинающему радиолюбителю. Широко распространённая микросхема серии 555 вполне подходит для этих целей

Это таймер реального времени со встроенным цифровым компаратором, в данном случае используется как генератор.

Частота прямоугольных импульсов задаётся выбором резисторов R1–R8 и конденсаторов С1, С2 переключателем SA1 и равняется: 25 kHz, 2.5 kHz, 250 Hz, 25Hz — соответственно положениям переключателя 1, 2, 3 и 4–8. Конденсатор Сх заряжается с частотой следования импульсов через диод VD1, до фиксированного напряжения. Разряд происходит во время паузы через сопротивления R10, R12–R15. В это время образуется импульс длительностью, зависимой от емкости Сх (больше ёмкость — длиннее импульс). После прохождения интегрирующей цепи R11 C3 на выходе появляется напряжение, соответствующее длине импульса и пропорциональное величине ёмкости Сх. Сюда и подключается (Х 1) мультиметр для измерения напряжения на пределе 200 mV. Положения переключателя SA1 (начиная с первого) соответствуют пределам: 20 пФ, 200 пФ, 2 нФ, 20 нФ, 0.2 мкФ, 2 мкФ, 20 мкФ, 200 мкФ.

Наладку конструкции необходимо делать с прибором, который будет применяться в дальнейшем. Конденсаторы для наладки надо подобрать с ёмкостью, равной поддиапазонам измерений и как можно точнее, от этого будет зависеть погрешность. Отобранные конденсаторы поочерёдно подключаются к Х1. В первую очередь настраиваются поддиапазоны 20 пФ–20 нФ, для этого соответствующими подстроечными резисторами R1, R3, R5, R7 добиваются соответствующих показаний мультиметра, возможно придётся несколько изменить номиналы последовательно включённых сопротивлений. На других поддиапазонах (0.2 мкФ–200 мкФ) калибровка проводится резисторами R12–R15.

Провода, соединяющие резисторы с переключателем должны быть как можно короче, а если позволяет конструкция — размещены на его выводах. Переменные желательно использовать многооборотные, лучше вообще — постоянные, но это не всегда возможно. Тщательнейшим образом необходимо отмыть печатную плату от флюса и другой грязи, иначе паразитные ёмкости и сопротивления между проводниками могут привести к полной неработоспособности изделия.

При выборе источника питания следует учитывать, что амплитуда импульсов напрямую зависит от его стабильности. Интегральные стабилизаторы серии 78хх вполне здесь применимы Схема потребляет ток не более 20–30 миллиампер и конденсатора фильтра ёмкостью 47–100 микрофарад будет достаточно. Погрешность измерений, при соблюдении всех условий, может составить около 5 %, на первом и последнем поддиапазонах, по причине влияния ёмкости самой конструкции и выходного сопротивления таймера, возрастает до 20 %. Это надо учитывать при работе на крайних пределах.

Что такое тестер конденсаторов

Конденсатор представляет собой радиодеталь, состоящую из двух обкладок, сделанных из проводников и диэлектрического слоя между ними. Электрическая емкость элемента измеряется в фарадах. Эта величина очень большая, поэтому на практике используются микрофарады или пикофарады.

Выполнение измерения емкости

Конденсаторы обычно бывают электролитическими или пленочными. В последних параметры мало меняются с течением времени. У электролитических ситуация другая. Жидкий состав, находящийся внутри, постепенно высыхает, и деталь теряет свои полезные свойства. Часто по внешнему виду нельзя судить по его исправности. Для проверки его нужно выпаивать.

Другая ситуация, когда важно проверить емкость, — это нарушение его работы от различных причин случайного характера — скачков напряжения или работы в условиях повышенной температуры. Неисправный элемент может послужить причиной неисправной работы всего устройства

Чтобы изучить ситуацию, необходимо определить, соответствует ли емкость конденсатора номинальному значению. Для этой цели применяют тестеры конденсаторов.

Они могут быть цифровыми или аналоговыми. Во время проверки может определяться емкость или ESR, параметр, который представляет собой последовательное эквивалентное сопротивление.

Высокоточное измерение

В некоторых мультиметрах имеется возможность непосредственной проверки емкости.

ESR-измерители производят определение эквивалентного последовательного сопротивления. Здесь речь идет о реактивном сопротивлении, которое обусловлено емкостью. Оно может существенно возрастать при увеличении частоты. Этот параметр оценивают с помощью сложных алгоритмов. Если он принимает слишком большую величину, то в некоторых ситуациях может быть нарушен температурный режим работы элемента. Это особенно опасно для электролитических элементов.

Вам это будет интересно Работа со сварочным аппаратом

Существуют специальные измерители емкости.

Аналоговое устройство

ESR-метр

Такой измерительный прибор оснащен жидкокристаллическим дисплеем. У него имеются 2 щупа: красный и черный. Первый считается положительным, второй — отрицательным. Перед тем, как проверять, элемент разряжают, закорачивая выводы друг на друга. Чтобы провести измерение, щупы соединяют с выводами конденсатора. Если используется полярная модель, необходимо при этом учитывать полярность щупов.

Затем прибор включают и через несколько секунд на экране появляются величины емкости и параметра ESR.

Измеритель емкости

Мультиметр

Для определения исправности конденсатора мультиметр можно перевести в режим определения сопротивления. Переключатель нужно установить на 2 МОм или 200 Ком. Нужно подобрать этот параметр таким образом, чтобы зарядка происходила не сразу, а в течение нескольких секунд.

К его выводам элемента, который нужно выпаять из схемы, подключают красный и черный щупы. Теперь необходимо следить за данными на дисплее. Если там 0, то это означает обрыв контактов или другое механическое повреждение. Если tester показывает увеличивающиеся цифры и в конце концов появляется 1, то это говорит о работоспособности детали. Если сразу появляется единица, то это означает, что в конденсаторе произошел пробой.

При использовании аналогового прибора у исправной детали можно будет увидеть постепенное движение стрелки. Мгновенная установка минимального значения говорит об обрыве, а максимального — свидетельствует о пробое.

В мультиметре предусмотрена возможность непосредственного измерения емкости. Для этого нужно установить переключатель аппарата для ее измерения и выбрать наиболее подходящую шкалу. Обычно для контактов конденсатора предусматриваются особые клеммы. Если их нет, надо воспользоваться красным и черными щупами. В последнем случае необходимо воспользоваться такими же клеммами, как при измерении сопротивления.

Если значение емкости равно или близко к номинальному, то элемент исправен и может быть использован. В противном случае он неработоспособен. Считается, что совпадение с разницей не более 20% говорит о радиотехнической пригодности детали.

Протечка электролита

Метод амперметра и вольтметра.

Пренебрегая потерями в диэлектрике конденсатора, емкость его можно определить методом амперметра и вольтметра. Измерив ток и напряжение (рис. 22) и зная частоту переменного тока, емкость можно определить по формуле где I—ток, а\ U — напряжение, е; m— угловая частота сети, равная 314 для установок 50 гц. При измерении емкости этим методом напряжение должно быть синусоидальным, так как в противном случае за счет высших гармоник может произойти значительное искажение кривой тока, что может привести к большим погрешностям измерения. Наличие в кривой подводимого напряжения составляющих высших гармоник дает завышенные значения емкости. Во избежание этой ошибки при измерении емкости методом амперметра и вольтметра конденсатор должен быть присоединен к линейному, а не к фазному напряжению сети, так как в последнем (напряжение фаза — нуль) могут быть высшие гармоники. Для уменьшения влияния высших гармоник на точность измерения по методу амперметра и вольтметра следует, кроме того, включать в цепь последовательно с конденсатором активное сопротивление, равное около 10% реактивного сопротивления конденсатора, т. е. где и — угловая частота сети, равная 314 для установок 50 гц; С — емкость конденсатора, мф. Это же сопротивление служит для защиты амперметра от повреждения в случае наличия короткого замыкания в испытываемом конденсаторе. Метод ваттметра. Определив по показанию приборов (рис. 23) ток, напряжение и мощность, можно вычислить сначала активное сопротивление г~Р/1г, полное сопротивление цепи i ; или, объединив комую емкость по формуле написанные формулы, получим: Точность измерений при этом методе такая же или несколько выше, чем у предыдущего. Измерение ваттметром мощности потерь в конденсаторе не всегда возможно вследствие ее малости. Поэтому чаще пользуются мостовыми методами измерения емкости.

Вычисление с помощью формул

Вычисление номинальной емкости элемента требуется в 2 случаях:

  1. Конструкторы электронной аппаратуры рассчитывают параметр при создании схем.
  2. Мастера при отсутствии конденсаторов подходящей мощности и емкости используют расчет элемента для подбора из доступных деталей.

RC цепи рассчитывают с применением величины импеданса – комплексного сопротивления (Z). Rа – потери тока на нагревание участников цепи. Ri и Rе – учитывают влияние индуктивности и ёмкости элементов. На выводах резистора в RC цепи напряжение Uр обратно пропорционально Z.

Тепловое сопротивление увеличивает потенциал на нагрузке, а реактивное уменьшает. Работа конденсатора на частотах выше резонансных, когда растет реактивная составляющая комплексного сопротивления, приводит к потерям напряжения.

Частота резонанса обратно пропорциональна способности накапливать заряд. Из формулы для определения Fр вычисляют, какие значения Ск (емкости конденсатора) требуются для работы цепи.

Для расчета импульсных схем используют постоянную времени цепи, определяющую воздействие RC на структуру импульса. Если знают сопротивление цепи и время заряда конденсатора, по формуле постоянной времени вычисляют емкость. На истинность результата влияет человеческий фактор.

Мастера используют параллельные и последовательные соединения конденсаторов. Формулы расчета обратны формулам для резисторов.

Последовательное соединение делает емкость меньше меньшей в соединении элементов, параллельная схема суммирует величины.

Схема измерения

Для определения ёмкости неизвестного конденсатора следует включить его в цепь из резистора и источника питания. Входное напряжение выбирается несколько меньшим номинального напряжения конденсатора, если оно неизвестно — достаточно будет 10–12 вольт. Ещё необходим секундомер. Для исключения влияния внутреннего сопротивления источника питания на параметры цепи, на входе надо установить выключатель.

Сопротивление подбирается экспериментально, больше для удобства отсчёта времени, в большинстве случаев в пределах пяти — десяти килоом. Напряжение на конденсаторе контролируется вольтметром. Время отсчитывается с момента включения питания — при зарядке и выключении, если контролируется разряд. Имея известные величины сопротивления и времени, по формуле t = RC вычисляется ёмкость.

Удобнее отсчитывать время разрядки конденсатора и отмечать значения в 90 % или 95 % от начального напряжения, в этом случае расчёт ведётся по формулам 2.2t = 2.2RC и 3t = 3RC. Таким способом можно узнать ёмкость электролитических конденсаторов с точностью, определяемой погрешностями измерений времени, напряжения и сопротивления. Применение его для керамических и других малой ёмкости, с использованием трансформатора 50 Hz, вычислением емкостного сопротивления — даёт непрогнозируемую погрешность.

↑ К вопросу о точности вообще

Начиная с 10 Ом, точность примерно 3% и ухудшается примерно до 6% при 20 Ом (200мВ), но точность при измерениях бракованных элементов не важна. Поскольку измерения проводятся при комнатной температуре, термонестабильность будет мала, испытаний на эту тему я не проводил. При измерениях ESR конденсаторов в компьютерных блоках питания и на материнских платах, я пришел к выводу, что конденсаторы от 1000 мкФ с сопротивлением 0,5 Ом надо срочно выпаивать и отправлять в ведро, нормальное ESR 0,02…0,05 Ом. Попутно обнаружил, что у исправных конденсаторов ESR очень сильно зависит от температуры, так у конденсатора 22 мкФ ESR уменьшалась от тепла пальцев на 10%. Это объясняет, почему некоторые фанатичные лампадные конструкторы специально делают подогрев конденсаторов в катодных цепях с помощью проволочных обогревателей. По этой причине, а также по причине имеющегося сопротивления контактов считаю, что в измерения тысячных долей Ом нет особой необходимости.На первом фото ЭПС конденсатора 0,03 Ом.

Измерение емкости конденсатора

Измерение ёмкости

Емкость является основной характеристикой конденсатора. Она указывается на внешней оболочке прибора, и при наличии тестера можно замерить реальное значение и сравнить его с номиналом.

Переключатель мультиметра переводится в диапазон измерений. Значение ставится равное или близкое к номиналу, указанному на компоненте. Сам конденсатор устанавливается в специальные отверстия –CX+ (если они есть на мультиметре) или с помощью щупов. Подключаются щупы так же, как и при измерении в режиме сопротивления.

При подключении щупов на мониторе должно появиться значение сопротивления. Если оно близко к номинальной характеристике, конденсатор исправен. Когда расхождение полученного и номинального значений отличаются более чем на 20% , устройство пробито, и его нужно поменять.

Третий вариант схемы измерителя ESR

Чтобы иметь возможность проверять тракты ЗЧ, в схему прибора необходимо ввести еще один переключатель, с помощью которого частота генератора импульсов понижается до 1 кГц.

Кроме того, измерения показали, что потребляемый прибором ток не превышает 3…5 мА, и его лучше сделать малогабаритным переносным, чтобы иметь всегда под рукой. Питать такой вариант прибора можно от батареи типа «Крона» через маломощный 5-вольтовый стабилизатор.

Схема такого варианта прибора показана на рис.З. Переключателем S2 выбирают частоту генератора, а переключателем S3 включают питание прибора.

Рис. 3. Схема самодельного измерителя ESR с питанием от батареи.

Длительная работа с прибором позволила выявить еще один «скрытый резерв»: с помощью него можно проверять катушки индуктивности (обмотки трансформаторов) на наличие короткозамкнутых витков.

При этом прибор измеряет все то же реактивное сопротивление, только на этот раз индуктивное Х|_. Индуктивное сопротивление можно рассчитать по формуле:

где Xl ~ индуктивное сопротивление, Ом; f — частота, Гц; L — индуктивность, Гн. Например, катушка индуктивностью в 100 мкГн на частоте 100 кГц имеет индуктивное сопротивление Хр=62,8 Ом.

Ели такую катушку подключить к нашему прибору, стрелка измерителя практически останется в положении «бесконечность», отклонение будет едва заметно. Наличие же в обмотке катушки короткозамкнутого витка (витков) приведет к резкому уменьшению индуктивного сопротивления, до единиц ом, и стрелка прибора в этом случае покажет какое-то малое сопротивление.

Индуктивность катушек, применяемых в радиотехнических устройствах, может находиться в очень широких пределах: от единиц микрогенри в ВЧ дросселях до десятков генри в силовых трансформаторах.

Поэтому проверка катушек с большой индуктивностью на частоте 100 кГц может вызвать затруднения. Чтобы проверять такие катушки (например, первичные обмотки маломощных силовых трансформаторов), частоту генератора нужно установить в 1 кГц (переключателем S2).

Самодельный С — метр

Расчет емкости конденсатора

Не принимая во внимание разные экзотические решения, такие как баллистический гальванометр и мостовые схемы с магазином сопротивлений, изготовить простой прибор или приставку к мультиметру по силам и начинающему радиолюбителю. Широко распространённая микросхема серии 555 вполне подходит для этих целей. Это таймер реального времени со встроенным цифровым компаратором, в данном случае используется как генератор

Это таймер реального времени со встроенным цифровым компаратором, в данном случае используется как генератор.

Частота прямоугольных импульсов задаётся выбором резисторов R1–R8 и конденсаторов С1, С2 переключателем SA1 и равняется: 25 kHz, 2.5 kHz, 250 Hz, 25Hz — соответственно положениям переключателя 1, 2, 3 и 4–8. Конденсатор Сх заряжается с частотой следования импульсов через диод VD1, до фиксированного напряжения. Разряд происходит во время паузы через сопротивления R10, R12–R15. В это время образуется импульс длительностью, зависимой от емкости Сх (больше ёмкость — длиннее импульс). После прохождения интегрирующей цепи R11 C3 на выходе появляется напряжение, соответствующее длине импульса и пропорциональное величине ёмкости Сх. Сюда и подключается (Х 1) мультиметр для измерения напряжения на пределе 200 mV. Положения переключателя SA1 (начиная с первого) соответствуют пределам: 20 пФ, 200 пФ, 2 нФ, 20 нФ, 0.2 мкФ, 2 мкФ, 20 мкФ, 200 мкФ.

Наладку конструкции необходимо делать с прибором, который будет применяться в дальнейшем. Конденсаторы для наладки надо подобрать с ёмкостью, равной поддиапазонам измерений и как можно точнее, от этого будет зависеть погрешность. Отобранные конденсаторы поочерёдно подключаются к Х1. В первую очередь настраиваются поддиапазоны 20 пФ–20 нФ, для этого соответствующими подстроечными резисторами R1, R3, R5, R7 добиваются соответствующих показаний мультиметра, возможно придётся несколько изменить номиналы последовательно включённых сопротивлений. На других поддиапазонах (0.2 мкФ–200 мкФ) калибровка проводится резисторами R12–R15.

Провода, соединяющие резисторы с переключателем должны быть как можно короче, а если позволяет конструкция — размещены на его выводах. Переменные желательно использовать многооборотные, лучше вообще — постоянные, но это не всегда возможно. Тщательнейшим образом необходимо отмыть печатную плату от флюса и другой грязи, иначе паразитные ёмкости и сопротивления между проводниками могут привести к полной неработоспособности изделия.

При выборе источника питания следует учитывать, что амплитуда импульсов напрямую зависит от его стабильности. Интегральные стабилизаторы серии 78хх вполне здесь применимы Схема потребляет ток не более 20–30 миллиампер и конденсатора фильтра ёмкостью 47–100 микрофарад будет достаточно. Погрешность измерений, при соблюдении всех условий, может составить около 5 %, на первом и последнем поддиапазонах, по причине влияния ёмкости самой конструкции и выходного сопротивления таймера, возрастает до 20 %. Это надо учитывать при работе на крайних пределах.

Измерение емкости конденсатора

Емкость является основной характеристикой конденсатора. Она указывается на внешней оболочке прибора, и при наличии тестера можно замерить реальное значение и сравнить его с номиналом.

Переключатель мультиметра переводится в диапазон измерений. Значение ставится равное или близкое к номиналу, указанному на компоненте. Сам конденсатор устанавливается в специальные отверстия –CX+ (если они есть на мультиметре) или с помощью щупов. Подключаются щупы так же, как и при измерении в режиме сопротивления.

При подключении щупов на мониторе должно появиться значение сопротивления. Если оно близко к номинальной характеристике, конденсатор исправен. Когда расхождение полученного и номинального значений отличаются более чем на 20% , устройство пробито, и его нужно поменять.

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий