Питание от батарейки: как выбрать источник и правильно подключить светодиод

Зачем это нужно?

На первый взгляд может показаться, что в подсветке светодиодной лентой с питанием от батареек нет необходимости. Но если задуматься, то только в квартире можно найти с десяток мест, подсветка которых повысит уровень комфорта и придаст оригинальности. Например,

  • внутри шкафа-купе и навесных кухонных шкафчиков;
  • по контуру полочек и этажерок;
  • вокруг картин и зеркал;
  • для украшения детских игрушек и велосипеда;
  • в кладовой и т.п.

Кроме того, автономное освещение из светодиодной ленты пригодится в гараже, подвале, дачном домике, в общем там, где отсутствует стационарный подвод электросети 220 В. А в регионах, где нередки случаи отключения электроэнергии, использовать подсветку на светодиодах можно в качестве аварийного освещения.

Какие светодиоды подключают к 12 вольтам?

Если коротко ответить на вопрос, вынесенный в качестве подзаголовка, то ответ будет звучать так: никакие! Неспециалисту такой ответ покажется парадоксальным, ведь в продаже имеются светодиоды, которые, как заявляют продавцы, рассчитаны на питание от источника 12 вольт.

Возьмемся утверждать, что на конкретное напряжение могут быть рассчитаны только изделия на основе светодиодов. Говорить о конкретном рабочем напряжении LED не корректно. Это связанно с физическими процессами, протекающими в нем при испускании света.

Главными характеристиками этих процессов являются рабочий ток и максимально допустимый ток прибора. В справочниках и даташитах указывают напряжения на светодиодах при протекании рабочего тока. Эти величины используют для расчетов LED конструкций, а не для выбора источника питания.

Кстати, напряжение в рабочем режиме лежит всего лишь в пределах от 1.5 В до 3.5 В. Величина зависит, в основном, от цвета испускаемого LED. Меньшие напряжения падают на красных светодиодах, большие значения относятся к сверхъярким. Имеющиеся в продаже светоизлучающие диоды на 12 вольт не являются единичными приборами.

Двенадцативольтовые LED это матрицы, состоящие из нескольких светоизлучающих диодов. Матрицы представляют собой светодиодные сборки, собранные из цепочек последовательно подключенных приборов.

В каждой матрице имеется несколько цепочек, которые подключены параллельно между собой. Когда говорят, что светодиод рассчитан на двенадцать вольт, то подразумевают, что падение напряжения на последовательной цепочке из них при протекании рабочего тока составляет примерно 12 В.

Подключение через стационарный блок питания

Поскольку мультимедийные системы для авто работают от напряжения 12 В, для их функционирования не нужно использовать более мощные источники питания. Поэтому многие умельцы подключают магнитолу к блоку бесперебойного питания и разным сетевым адаптерам.

Какой выбрать блок питания

Чтобы определить, какой блок питания для автомагнитолы нужен, важно оценить силу выходного тока. Она должна составлять не меньше 5 А

При повышении нагрузок потребление может вырастать до 10-15 А

При повышении нагрузок потребление может вырастать до 10-15 А.

На рынке доступны профессиональные устройства с увеличенным запасом мощности, однако из-за дороговизны они не пользуются спросом. Лучше подобрать простой, но качественный БП с оптимальными рабочими параметрами.

Подключение магнитолы

Собираясь подключить магнитолу через блок компьютера или ноутбука, нужно отрезать базовый разъем устройства, по которому оно подключается к транспортному средству, и выполнить зачистку концов проводов для соединения с сетевым адаптером или источником бесперебойного питания. Проводка оставляется в старых разъемах, после чего выполняется сборка акустической схемой по базовой схеме.

Роль АКБ выполняет источник бесперебойного питания или адаптер с выходным напряжением 12 Вт.

Подключение от 3 В батарейки

Батарейка напряжением 3 вольта может служить источником питания светодиода без дополнительных элементов. Его можно подключить напрямую, главным условием будет соблюдение полярности. Поскольку для LED чаще всего требуется больше 3 В, свечение будет слегка приглушенным. Удобнее всего подключить элемент к дисковому аккумулятору напряжением 3 В (такие установлены в компьютерах). Светодиод подключают через выключатель и упаковывают в небольшой корпус. Подобным образом часто изготавливают миниатюрные фонарики для подсветки замков и прочих объектов.

READ Как подключить камеру на компьютер на виндовс 7

Можно изготовить небольшой преобразователь, к которому одновременно можно подключить 5 или 6 LED элементов. Для этого понадобится регулятор тока светодиодных ламп LM3410, вход которого присоединяют к аккумулятору 3 вольта, а на выходе появляется 24 В. Микросхема позволяет плавно регулировать яркость свечения LED элементов.

Когда это бесполезно

Если важна надежность освещения или покрывается большая площадь, батарейки не подойдут. Блоки питания удобнее (или незаменимы), когда хочется:

  • вести работы по освещению большого помещения или множества их одновременно;
  • оформлять фасады, карнизы, наружную рекламу;
  • оставлять подсветку включенной надолго;
  • использовать световые эффекты (мерцание, затухание, переливы);
  • подсвечивать малодоступные или высотные участки помещения, где не получится постоянно паять и перепаивать батареи без риска сойти с ума.

Блок питания нагревается во время работы. Ему потребуется изолированное от других вещей, но легко доступное человеку место. Корпусы блоков бывают открытыми или полугерметичными, в зависимости от предполагаемого местонахождения.

Как подключить от 3В батарейки

Подключить сверхъяркий светодиод к батарее 3 В можно не используя никаких дополнительных деталей. Так как рабочее напряжение светодиода несколько больше 3 В, то светодиод будет светить не в полную силу. Иногда это может быть даже полезным. Например, используя светодиод с выключателем и дисковый аккумулятор на 3 В (в народе называемая таблеткой), применяемый в материнских платах компьютера, можно сделать небольшой брелок-фонарик. Такой миниатюрный фонарик может пригодиться в разных ситуациях.

От такой батарейки — таблетки на 3 Вольта можно запитать светодиод

Принцип работы и схемы подключения двухцветных светодиодов

Используя пару батареек 1.5 В и покупной или самодельный преобразователь для питания одного или нескольких LED, можно изготовить более серьезную конструкцию. Схема одного из подобных преобразователей (бустеров) изображена на рисунке.

Бустер на основе микросхемы LM3410 и нескольких навесных элементов имеет следующие характеристики:

  • входное напряжение 2.7 – 5.5 В.
  • максимальный выходной ток до 2.4 А.
  • количество подключаемых LED от 1 до 5.
  • частота преобразования от 0.8 до 1.6 МГц.

Выходной ток преобразователя можно регулировать, изменяя сопротивление измерительного резистора R1. Несмотря на то, что из технической документации следует, что микросхема рассчитана на подключение 5-ти светодиодов, на самом деле к ней можно подключать и 6. Это обусловлено тем, что максимальное выходное напряжение чипа 24 В. Еще LM3410 позволяет регулировать яркость свечения светодиодов (диммирование). Для этих целей служит четвертый вывод микросхемы (DIMM). Диммирование можно осуществлять, изменяя входной ток этого вывода.

Зажигаем светодиод от одной батарейки

Представляю вашему вниманию, на мой взгляд самую правильную схему блок-генератора. На просторах интернета можно найти кучу подобных схем, но львиная доля от них — либо содержат не те компоненты, либо не содержат нужных компонентов вообще. Я предлагаю простую схему из доступных компонентов, которую можно собрать хоть навесным монтажом и она будет работать!

Данная схема представлена ниже:

Самая важная часть схемы — это трансформатор, который мотается на ферритовом кольце. Я предлагаю мотать данный трансформатор на кольце габаритами 10x6x4.5, однако вы можете выбрать любое попавшееся под руку ферритовое кольцо приблизительно сходных размеров. Достать их можно из энергосберегающих ламп или из блока питания ПК. Обмотка трансформатора делается медной лакированной проволокой диаметром 0.45 мм. Обе обмотки должны быть в 10-20 витков каждая, оптимально — 15 витков. Обмотки не должны перекручиваться, витки должны лежать максимально плотно друг к другу. Как видно на схеме — конец первой обмотки соединяется с началом второй.

К каким батарейкам можно подключать светодиод?

В принципе, просто зажечь светодиод, можно от любой батарейки. Разработанные радиолюбителями и профессионалами электронные схемы позволяют успешно справиться с этой задачей. Другое дело, сколько времени будет непрерывно работать схема с конкретным светодиодом (светодиодами) и конкретной батарейкой или батарейками.

Для оценки этого времени следует знать, что одной из основных характеристик любых батарей, будь то химический элемент или аккумулятор, является емкость. Емкость батареи – С выражается в ампер-часах. Например, емкость распространенных пальчиковых батареек формата ААА, в зависимости от типа и производителя, может составлять от 0.5 до 2.5 ампер-часов. В свою очередь светоизлучающие диоды характеризуются рабочим током, который может составлять десятки и сотни миллиампер. Таким образом, приблизительно рассчитать, на сколько хватит батареи, можно по формуле:

В данной формуле в числителе стоит работа, которую может совершить батарея, а в знаменателе мощность, которую потребляет светоизлучающий диод. Формула не учитывает КПД конкретно схемы и того факта, что полностью использовать всю емкость батареи крайне проблематично.

При конструировании приборов с батарейным питанием обычно стараются, чтобы их ток потребления не превышал 10 – 30% емкости батареи. Руководствуясь этим соображением и приведенной выше формулой можно оценить сколько нужно батареек данной емкости для питания того или иного светодиода.

READ Как подключить нокиа 311 к интернету

Напряжение питания светодиодов

Несмотря на то что электрический параметр №1 для светодиода – это номинальный ток, часто для расчётов необходимо знать напряжение на его выводах. Под понятием «напряжение светодиода» понимают разницу потенциалов на p-n-переходе в открытом состоянии.

Оно является справочным параметром и вместе с другими характеристиками указывается в паспорте к полупроводниковому прибору. 3, 9 или 12 вольт… Часто в руки попадают экземпляры, о которых ничего не известно. Так как узнать падение напряжения на светодиоде?

Прекрасной подсказкой в этом случае является цвет свечения, внешняя форма и размеры полупроводникового прибора. Если корпус светодиода выполнен из прозрачного компаунда, то цвет его остаётся загадкой, разгадать которую поможет мультиметр.

Для этого переключатель цифрового тестера переводят в положение «проверка на обрыв» и щупами поочерёдно касаются выводов светодиода. У исправного элемента в прямом смещении будет наблюдаться небольшое свечение кристалла. Таким образом, можно сделать вывод не только о цвете свечения, но и о работоспособности полупроводникового прибора.

Светоизлучающие диоды разных цветов изготавливают из различных полупроводниковых материалов. Именно химический состав полупроводника во многом определяет напряжение питания светодиодов, точнее, падение напряжение на p-n-переходе.

В связи с тем, что в производстве кристаллов используют десятки химических соединений, точного напряжения для всех светодиодов одного цвета не существует. Однако есть определённый диапазон значений, которых зачастую достаточно для проведения предварительных расчетов элементов электронной цепи.

С одной стороны, размер и внешний вид корпуса не влияют на прямое напряжение светодиода. Но, с другой стороны. через линзу можно увидеть количество излучающих кристаллов, которые могут быть соединены последовательно. Слой люминофора в SMD светодиодах может скрывать целую цепочку из кристаллов.

Ярким примером является миниатюрные многокристальные светодиоды от компании Cree, падение напряжения на которых зачастую значительно превышает 3 вольта. В последние годы появились белые SMD светодиоды, в корпусе которых размещено 3 последовательно соединённых кристалла. Их часто можно встретить в китайских светодиодных лампах на 220 вольт.

Естественно убедиться в исправности LED-кристаллов в такой лампе при помощи мультиметра не удастся. Стандартная батарейка тестера выдаёт 9 В, а минимальное напряжение срабатывания трёхкристального белого светоизлучающего диода – 9,6 В. Также встречаются двухкристальная модификация с порогом срабатывания от 6 вольт.

Самые точные данные о прямом падении напряжения на светодиоде можно получить путём проведения практических измерений. Для этого понадобится регулируемый блок питания (БП) постоянного тока с напряжение от 0 до 12 вольт, вольтметр или мультиметр и резистор на 510 Ом (можно больше). Лабораторная схема для тестирования показана на рисунке.

Здесь всё просто: резистор ограничивает ток, а вольтметр отслеживает прямое напряжение светодиода. Плавно увеличивая напряжение от источника питания, наблюдают за ростом показаний на вольтметре. В момент достижения порога срабатывания светодиод начнёт излучать свет.

В какой-то момент яркость достигнет номинального значения, а показания вольтметра перестанут резко нарастать. Это означает, что p-n-переход открыт, и дальнейший прирост напряжения с выхода БП будет прикладываться только к резистору. Текущие показания на экране и будут номинальным прямым напряжением светодиода.

Если ещё продолжить наращивать питание схемы, то расти будет только ток через полупроводник, а разность потенциалов на нём изменится не более чем на 0,1-0,2 вольт. Чрезмерное превышение тока приведёт к перегреву кристалла и электрическому пробою p-n-перехода.

Если рабочее напряжение на светодиоде установилось около 1,9 вольт, но при этом свечение отсутствует, то возможно тестируется инфракрасный диод. Чтобы убедиться в этом, нужно направить поток излучения на включенную фотокамеру телефона. На экране должно появиться белое пятно.

В отсутствии регулируемого блока питания можно запитать светодиод «кроной» на 9 В. Также можно задействовать в измерениях сетевой адаптер на 3 или 9 вольт, который выдаёт выпрямленное стабилизированное напряжение, и пересчитать номинал сопротивления резистора.

Схема и принцип её работы

Схема питания светодиода от батарейки на 1,5В представлена на рисунке. Основные функциональные элементы – однокаскадный транзисторный усилитель и импульсный трансформатор, за счет которого достигается глубокая положительная обратная связь. Ток базы транзистора ограничивается резистором R1, а для оптимизации выходных параметров установлен диод VD1 и конденсатор С1, о которых будет сказано немного позже.

Схема питания светодиода от одной батарейки работает по принципу блокинг-генератора. Формирование импульсов осуществляется за счет отпирания транзистора и перехода его в режим насыщения при помощи положительной обратной связи. Выход из насыщения происходит за счет уменьшения тока базы. Транзистор закрывается, и энергия трансформатора сбрасывается в нагрузку. В результате светодиод вспыхивает на короткий промежуток времени.

Теперь более детально рассмотрим работу схемы, представленной на рисунке. Известно, что ток в катушке индуктивности не может измениться мгновенно. Сначала, в момент подачи напряжения от батарейки транзистор находится в закрытом состоянии. Постепенное нарастание тока в коллекторной, а затем и в базовой обмотке, приводит к плавному отпиранию транзистора. Это приводит к росту тока коллектора, который протекает и через коллекторную обмотку. Данное увеличение тока трансформируется в базовую обмотку и ещё больше увеличивает ток базы.

В результате такого лавинообразного процесса в транзистор входит насыщение. В режиме насыщения коллекторный ток перестаёт нарастать, а значит, напряжение на базовой обмотке станет равным нулю. Это приведёт к снижению тока базы и выходу транзистора из насыщения. Напряжение на базовой обмотке меняет полярность, что способствует практически мгновенному запиранию транзистора. В результате вся накопленная энергия устремляется в нагрузку. Светодиод вспыхивает и пропускает через себя ток, который уменьшается от значения тока коллектора до нуля. На этом временном интервале в трансформаторе происходит обратный блокинг-процесс, который приводит к очередному отпиранию транзистора. Далее цикл повторяется.

Схема работает на частоте в несколько десятков килогерц. Поэтому тысячи вспышек в секунду воспринимаются человеческим глазом как постоянное свечение. Но схему можно немного доработать, исключив провалы тока через светодиод до нуля, и добавив в неё сглаживающий конденсатор и диод. Конденсатор С1 соединяют параллельно светодиоду, соблюдая полярность, а диод VD1 – последовательно, в цепь протекания тока нагрузки. VD1 предотвращает разряд конденсатора на открытый транзистор.

Подключение светодиода к батарейке, согласно данной схеме, требует соблюдения одного правила: нельзя включать собранное устройство без нагрузки (может сгореть транзистор).

Питание от батарейки

Если покупка аккумулятора – дорогое удовольствие, а заряжать его негде, то заставить светодиодную ленту светиться можно с помощью батареек. Рассмотрим 3 наиболее распространённых варианта подключения.

Вариант №1 предусматривает использование 6 пальчиковых батареек на 1,5 В, соединённых последовательно. Почему именно 6 штук? Потому что светодиодная лента даже при питании от 9В будет работать примерно в половину своей мощности. Во-первых, такого уровня света от ленты вполне хватит для подсветки чего-либо. Во-вторых, через светодиоды будет протекать вдвое меньший ток (нелинейность ВАХ), что позволит значительно продлить срок службы батареек. Но при желании можно увеличить количество элементов питания до 8.

Собрать схему светодиодной подсветки на батарейках можно двумя способами:

  • с помощью коротких проводков все батарейки запаивают между собой последовательно, скрепляют их изолентой и к крайнему «+» и «–» припаивают два провода для подключения светодиодной ленты;
  • в кассету (контейнер) вставляют 6 батареек, соблюдая указанную полярность. Провода, выходящие из кассеты, вместе со светодиодной лентой зажимают в коннекторе.

Ёмкость батарейки типа АА примерно в 2 раза больше, чем у батарейки ААА того же производителя.

Вариант №2 предполагает использование в схеме питание от одной 9 В батарейки «Крона». Ёмкость щелочной кроны примерно равна 0,5-0,6 А*ч. Это значит, что, например, лента на SMD 3528 длиной 30 см будет непрерывно светить в течение 5 часов. Крону часто используют для светодиодного тюнинга велосипеда.

Вариант №3 подразумевает совместное использование аккумулятора от телефона (смартфона) и повышающего преобразователя до 12 вольт. В такой комплектации светодиодная подсветка имеет несколько весомых плюсов:

  • надёжность и долговечность;
  • компактность (размер конвертера соизмерим с flash-накопителем);
  • приемлемая стоимость (конвертер 3,7 В-12 В – 2$, батарея – 10$);
  • аккумулятор легко зарядить от смартфона или зарядного устройства, а его ёмкость достигает 2000 мА*ч;
  • светоизлучающие диоды светят на полную яркость.

К конвертеру можно подключать батарейки и аккумуляторы любого типа. Главное, чтобы их напряжение совпадало с входным напряжением конвертера.

Проблемы при подключении


Принципиальная схема подключения светодиодов.

Принципиальная схема подключения светодиодов:

  1. Не использовать токоограничивающий резистор. Поскольку через светодиод будет проходить слишком большой ток, он вскоре выйдет из строя.
  2. Последовательное включение без резистора. Даже если вам кажется, что запитать четыре 3-вольтовых резистора к 12-вольтовой сети – это хорошая идея, вы заблуждаетесь. Из-за слабого контроля силы тока элементы быстро разрушаются.
  3. Использование одного резистора при параллельном подключении диодов. Из-за отличий в характеристиках диоды будут светить с разной интенсивностью. Увеличивается скорость разрушения.

К каким батарейкам можно подключать светодиод?

В принципе, просто зажечь светодиод, можно от любой батарейки. Разработанные радиолюбителями и профессионалами электронные схемы позволяют успешно справиться с этой задачей. Другое дело, сколько времени будет непрерывно работать схема с конкретным светодиодом (светодиодами) и конкретной батарейкой или батарейками.

Для оценки этого времени следует знать, что одной из основных характеристик любых батарей, будь то химический элемент или аккумулятор, является емкость. Емкость батареи – С выражается в ампер-часах. Например, емкость распространенных пальчиковых батареек формата ААА, в зависимости от типа и производителя, может составлять от 0.5 до 2.5 ампер-часов. В свою очередь светоизлучающие диоды характеризуются рабочим током, который может составлять десятки и сотни миллиампер. Таким образом, приблизительно рассчитать, на сколько хватит батареи, можно по формуле:

T= (C*Uбат)/(Uраб.led*Iраб.led)

В данной формуле в числителе стоит работа, которую может совершить батарея, а в знаменателе мощность, которую потребляет светоизлучающий диод. Формула не учитывает КПД конкретно схемы и того факта, что полностью использовать всю емкость батареи крайне проблематично.

При конструировании приборов с батарейным питанием обычно стараются, чтобы их ток потребления не превышал 10 – 30% емкости батареи. Руководствуясь этим соображением и приведенной выше формулой можно оценить сколько нужно батареек данной емкости для питания того или иного светодиода.

Диагностика проблем питания

Проверка блока питания выполняется по следующей схеме:

  1. Проверка надёжности подключения коннектора к блоку питания.
  2. Если в блоке есть диод-индикатор сети, нужно проверить, загорелся он или нет.
  3. Если диода нет, исправность проверяется мультиметром. На выходе напряжение не должно отсутствовать. В противном случае блок нужно ремонтировать.

На следующем этапе проверяют светодиодную ленту. Нужно подать напряжение на её выводы с помощью двух дополнительных проводов, не используя блок питания. «Плюс» подключается к выводу, он обозначен стрелкой на вилке, а «минус» поочерёдно подаётся на оставшиеся выводы. На этом этапе главное не ошибиться, чтобы не произошло замыкания между проводами блока.

Блок питания.

Питание можно подать от аккумулятора или батареек на 5-15 В. Лента не будет светить ярко, но этого хватит, чтобы проверить её работоспособность. Если нерабочими оказались несколько чипов или один из них, подсветка не загорится только в проблемных местах. Ремонт будет заключаться в замене испорченных диодов на новые.

Сколько времени будет светить

Как примерно высчитать, сколько времени будет работать та или иная светодиодная лента на батарейках и какие батарейки под нее лучше подобрать?

Для начала вам нужно узнать название самой ленты и какие светодиоды в ней используются. Вбиваете эту марку в гугл и ищите параметры.

Самый главный – это напряжение и потребляемый светодиодом ток.

Допустим, потребляемый ток одного светодиода RGB ленты, при работе одного канала (свечение красным цветом) будет 18мА. Если работают все 3 цвета, то ток уже достигает 54мА.

Далее подсчитываете, сколько таких светодиодов будет в вашей подсветке. И умножаете этот ток на их количество.

Например, при 50 диодах и свечении ленты на максимальной мощности, общий потребляемый ток будет составлять – 2700мА.

Довольно существенная величина. Такой ток могут выдать аккумуляторные батарейки 18650. Для 12 вольтовой подсветки вам понадобится собрать их в магазине минимум 3 штуки.

Емкость аккумулятора 18650 в самых популярных моделях составляет 2600мА/ч. Есть больше и меньше. Эти цифры означают – данная подсветка на батарейках 18650 при токе потребления 2600мА, будет непрерывно светиться около 1 часа.

Если потребляемый ток превышает номинальный ток разряда аккумулятора, соответственно и лента будет гореть значительно меньший временной промежуток, и наоборот.

Только при этом не забывайте, что у небольших батареек, не рекомендуется превышать ток разряда больше чем в полтора-два раза от ее емкости.

Иначе батарейки быстро испортятся.

К каким батарейкам можно подключать светодиод?

В принципе, просто зажечь светодиод, можно от любой батарейки. Разработанные радиолюбителями и профессионалами электронные схемы позволяют успешно справиться с этой задачей. Другое дело, сколько времени будет непрерывно работать схема с конкретным светодиодом (светодиодами) и конкретной батарейкой или батарейками.

Для оценки этого времени следует знать, что одной из основных характеристик любых батарей, будь то химический элемент или аккумулятор, является емкость. Емкость батареи – С выражается в ампер-часах. Например, емкость распространенных пальчиковых батареек формата ААА, в зависимости от типа и производителя, может составлять от 0.5 до 2.5 ампер-часов. В свою очередь светоизлучающие диоды характеризуются рабочим током, который может составлять десятки и сотни миллиампер. Таким образом, приблизительно рассчитать, на сколько хватит батареи, можно по формуле:

T= (C*Uбат)/(Uраб.led*Iраб.led)

В данной формуле в числителе стоит работа, которую может совершить батарея, а в знаменателе мощность, которую потребляет светоизлучающий диод. Формула не учитывает КПД конкретно схемы и того факта, что полностью использовать всю емкость батареи крайне проблематично.

При конструировании приборов с батарейным питанием обычно стараются, чтобы их ток потребления не превышал 10 – 30% емкости батареи. Руководствуясь этим соображением и приведенной выше формулой можно оценить сколько нужно батареек данной емкости для питания того или иного светодиода.

Подключение сверхярких и мощных led к 12 В

В мощных и сверхярких светодиодах при свечении напряжение снижается на 3,5 вольт, среднее потребление тока 350 мА, мощность от 1 W. Автомобильный аккумулятор не подходит для прямого подключения такого источника света. Самый простой выход из ситуации – последовательно подключить к цепочке сопротивление, гасящее вольтаж. Это значит, что требуется расчет его параметров.

Сопротивление: R=(Uпит. – Uд)/Iд.

Мощность сопротивления: P=I2*R

Если купить деталь с полученной мощностью трудно, необходимо выбрать детали, дающие нужные показатели при параллельном подключении.

Основные выводы

Светодиод можно подключить к любой батарейке, но методика будет отличаться в зависимости от параметров источника:

  • для элементов АА или ААА (1,5 В) потребуется сборка усилителя, что для неподготовленного человека представляет определенную сложность;
  • батарейки на 3 В можно подключать к светодиодам напрямую, без промежуточных элементов;
  • элементы «Крона» лучше всего подключать к сборке 3 или 4 LED.
  • https://sdelaitak24.ru/%d0%bf%d0%b8%d1%82%d0%b0%d0%bd%d0%b8%d0%b5-%d1%81%d0%b2%d0%b5%d1%82%d0%be%d0%b4%d0%b8%d0%be%d0%b4%d0%b0-%d0%be%d1%82-%d0%be%d0%b4%d0%bd%d0%be%d0%b9-%d0%b1%d0%b0%d1%82%d0%b0%d1%80%d0%b5%d0%b9%d0%ba/
  • https://ledno.ru/svetodiody/kak-podklyuchit-led-k-batareike.html
  • https://svetilnik.info/svetodiody/kak-podklyuchit-svetodiod-k-batarejke.html
Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий