Что значит коэффициент пульсации освещенности

Допустимые нормы пульсации

Во второй половине 20-го века были
определены нормы коэффициента пульсации в 10,15 и 20% в зависимости от того,
какая работа выполняется в помещении. Значение 10% выбиралось, базируясь на
возможности обеспечить этот уровень. 20% выбиралось с учетом стробоскопического
эффекта при превышении этого значения. Для помещений с дисплеями показатель
снижается до 5%. Ограничений не существует, если люди в каком-то помещении
пребывают периодически.

Нормы коэффициента пульсации в России определены законодательно:

  • в
    СНиП 23-05-95 – значение для рабочей поверхности 10-20%, если пульсации с
    частотой до 300 Гц;
  • в
    ГОСТ 17677-82 – значения для люминесцентных ламп с пускорегулирующими
    аппаратами с частотой от 400 Гц;
  • в
    СанПиН 2.2.2/2.4.1340-03 – требования к пульсации потока света в помещениях с
    ЭВМ.

Для измерения пульсации этот ГОСТ рекомендует использовать только отдельные модели люксметров-пульсметров. Указанные приборы должны быть оснащены хорошо сформированной частотной хаpaктеристикой и измерять значения пульсирующего света с частотой до 300 Гц. Обязательно наличие цифровой обработки показателей света.

Как проверить пульсацию

«На глаз» уровень мерцания определить невозможно. Необходимо знать, что эта проблема актуальна для осветительных приборов, питающихся от источника переменного тока. Если светодиодная лампочка подключена к батарейке или аккумулятору, Кп=0%. Фото- и видеокамеры позволяют определить только наличие пульсации, точные параметры определить невозможно.

Для точной проверки требуется многокaнaльный
пульсметр-люксметр. Внешне он напоминает пульт дистанционного управления,
оснащен кнопками для управления, фотодатчиком и дисплеем. Очень высокий уровень
мерцаний определяется боковым зрением – если быстро перевести взгляд, возникает
стробоскопический эффект (предметы «распадаются).

Дома наличие
мерцания можно проверить мобильным телефоном или карандашом. Телефон держится на расстоянии метра
от лампочки, появление темных полос говорит о том, что поток света пульсирует. Если
быстро махать перед светильником карандашом, о пульсации свидетельствует
«распадание» следа.

1 Область применения

Настоящий стандарт устанавливает методы измерения
коэффициента пульсации освещенности на рабочих местах (рабочих поверхностях) от
общего и местного освещения, а также на условной рабочей поверхности в
помещениях зданий и сооружений.

Примечание –
Коэффициент пульсации освещенности учитывает пульсацию светового потока до 300
Гц. Пульсация освещенности свыше 300 Гц согласно не оказывает влияния на общую и зрительную
работоспособность.

Соблюдение норм коэффициента
пульсации освещенности позволяет предотвратить отрицательное влияние
стробоскопического эффекта и снизить зрительное и общее утомление человека.

Коэффициент пульсации различных источников света

Высокий коэффициент пульсации освещенности (свыше 30%) характерен для осветительных установок, в которых применяются светильники с разрядными лампами и электромагнитными ПРА, подключенные к однофазной линии питания . Вопреки сложившемуся мнению, пульсации светового потока свойственны в том числе и лампам накаливания с Кп до 15% при подключении к одной фазе). Коэффициент пульсации освещенности на объектах со светодиодными источниками света зависят от схемотехнического решения их блоков питания (драйверов): если с целью удешевления конечного продукта на выходе схемы вместо постоянного тока выдаётся выпрямленный ток промышленной частоты, коэффициент пульсации может достигать порядка 30%. В связи с этим рекомендуется запрашивать у производителей или поставщиков светодиодных светильников техническую информацию по пульсациям светового потока для каждого конкретного продукта.  Также коэффициент пульсации освещенности возрастает при регулировании светового потока источников света с помощью диммеров, работающих по принципу широтно-импульсной модуляции (ШИМ) на частоте до 300 Гц.

Один из способов снижения коэффициента пульсации в осветительных установках переменного тока – применение электронных ПРА с частотой питания от 400 Гц. При частоте питания свыше 5 кГц Кп составляет менее 1%. Данный способ эффективен для люминесцентных и компактных люминесцентных ламп, т.к. их применение с электронными ПРА стало практически повсеместным ввиду очевидных преимуществ и относительно невысокой стоимости решения. Частота питания современных ЭПРА для люминесцентных ламп – от 25 кГц. Ранее для снижения Кп в осветительных установках с многоламповыми люминесцентными светильниками применялись электромагнитные ПРА, работающие по схеме с расщеплённой фазой, обеспечивающей питание одной части ламп в светильнике отстающим током, другой – опережающим.

Разрядные лампы высокого давления  (ДРЛ, ДРИ, ДНаТ) применяются, как правило, в одноламповых светильниках, поэтому подключение по схеме с расщеплённой фазой для них является неактуальным. Применение РЛВД с электронными ПРА не приводит к существенному снижению Кп ввиду относительно низкой частоты выходного тока (порядка 135 Гц), ограниченной физическими особенностями работы горелок ламп.

Наиболее распространённый способ снижения Кп для РЛВД в осветительных установках с трёхфазными групповыми линиями – так называемая расфазировка – поочерёдное присоединение светильников к разным фазам сети. Максимальное снижение Кп достигается при установке в одной точке двух или трёх светильников, питаемых от разных фаз.

В таблице 1 приводятся значения Кп для основных типов источников света, установленных в одной точке при питании от одной, двух или трёх фаз.

Таблица 1. Значения коэффициента пульсаций для источников света, установленных в одной точке и подключенных к 1, 2 или 3 фазам

Тип источника светаКоэффициент пульсации, %
1 фаза2 фазы3 фазы
Лампа накаливания10…156…81
Люминесцентные лампы с ЭмПРА:
ЛБ (цветность 640)
ЛД (цветность 765)

34
55

14,4
23,3

3
5
Дуговые ртутные лампы (ДРЛ)58282
Металлогалогенные лампы (ДРИ)37182
Натриевые лампы высокого давления (ДНаТ)7737,79

Данное планирование расфазировки является идеальным, но значительно чаще встречается применение одного светильника в точке с поочерёдным соединением соседних светильников в ряду к разным фазам сети, реже – поочерёдное соединение соседних рядов светильников к разным фазам.

Оценить эффективность применения расфазировки в цепях переменного тока промышленной частоты с целью снижения  коэффициента пульсации в осветительных установках общего освещения со светильниками с разрядными лампами и электромагнитными ПРА можно с помощью предлагаемого метода расчёта, основанного на требованиях, предъявляемых при измерении Кп и инженерном методе расчёта Кп по таблицам . Данный метод может применяться для расчёта Кп в осветительных установках с металлогалогенными лампами (например, серии HPI Plus), дуговыми ртутными лампами (ДРЛ) и люминесцентными лампами типа ЛБ или ЛД и их зарубежных аналогов – ламп цветности 640 и 765 соответственно.

Измерение освещенности помещения: основные методы и приборы

Чтобы определить уровень освещенности, можно использовать один из перечисленных ниже приборов — флэшметр, экспозиметр и экспонометр, люксметр или фотометр.

Главный прибор из данной группы, способный выдать параметр реальной освещенности (естественной или искусственной) — люксметр.

Они бывают аналоговые и электронные. Аналоговые приборы уже не выпускаются, остались только раритеты.

Его можно применять для решения следующих задач:

  • измерения уровня освещения при аттестации (проверке) рабочих мест;
  • снятия показателей освещенности и их сравнение с расчетными параметрами при выполнении работ по монтажу элементов освещения;
  • контроль соответствия уровня освещенности в тех или иных помещениях действующим нормам;
  • анализ параметров освещенности на соответствие расчетным параметрам в период проведения работ по монтажу осветительных элементов.

Сам люксметра работает на простом принципе. Внутри устройства встроен фотоэлемент. Когда на него направляется световой поток, внутри полупроводникового элемента освобождается мощный поток электронов.

Результатом является появление электрического тока. Величина последнего пропорциональна силе света, который освещает фотоэлемент устройства.

Как правило, именно этот параметр и отражен на приборной шкале.

В зависимости от типа фиксации контролирующего элемента (датчика) люксметр бывает двух видов:

  • жесткая фиксация датчика (выполняется в форме цельного устройства, моноблока);
  • с датчиком выносного типа, который подключается при помощи гибкого кабеля.

Для проведения простых измерений достаточно самого простого устройства — люксметра в форме моноблока, без дополнительных опций.

Если же требуется уточнение большего числа параметров при проведении профессиональных исследований, то лучше применять более сложные устройства — с опцией вычисления среднего параметра и встроенной памятью.

Большой плюс — применение в люксметре специальных светофильтров. С их помощью можно более точно вычислить параметр силы света, исходящий от осветительных приборов с различными оттенками цвета.

Кроме этого, устройства с выносным датчиком показывают большую точность измерений, ведь на них меньше действуют внешние факторы.

В свою очередь, наличие ЖК-дисплея на современных моделях существенно упрощает процесс снятия показаний с устройства.

Такие приборы, как эскпозиметры и экспонометры применяются в фототехнике.

Их задача — фиксация параметров освещенности экспозиции и яркости. Зная величину этих показателей, фотограф может добиться идеального качества фото.

В свою очередь, экспонометры выпускаются двух видов. Они бывают внешними и внутренними.

Задача флэшметра — измерение уровня освещенности в процессе фотографирования. В качестве вспомогательных элементов применяются осветительные устройства импульсного типа.

В новых фотоаппаратах флэшметр уже встроен. Его задача — регулирование мощности фотовспышки в зависимости от уровня освещения.


Как правильно осветить ванную комнату

В профессиональных студиях, как правило, используются флэшметры выносного типа. Их особенность — наличие точной системы индикации, способной фиксировать не только падающие, но и отраженные лучи света.

Мультиметр (фотометр) — прогрессивный и более современный тип флэшметра. Его плюс — способность сочетания функций упомянутого нами прибора и экспонометра.

Коэффициент пульсации светового потока

Коэффициент пульсации — название показателя, определяющего качество потока света от соответствующих приборов, размещённых внутри помещений. Ещё применяют термин «частоты мерцания света при питании источника переменным током».

Формула для КП

Внимание! Если приборы питаются от сети на 50 ГЦ, пульсация ламп составит 100 Ггц. Газоразрядные источники энергии приводят к увеличению показателя на 30%

В том числе — если они подключены к однофазному току через электромагнитную пускорегулирующую аппаратуру

Газоразрядные источники энергии приводят к увеличению показателя на 30%. В том числе — если они подключены к однофазному току через электромагнитную пускорегулирующую аппаратуру.

15% может достигать пульсация по отношению к лампе накаливания, которая подключена к одной фазе.

От схемы драйвера пульсация зависит, когда речь о светодиодных лампах. 30% — стандартная величина, если на выходе применяют прямой ток, для которого характерна промышленная частота. Подключение диммера ШИМ способно ещё больше увеличить уровень.

Прибор для измерения коэффициента пульсации освещенности

Специальный прибор пульсомер определяет значение, на основе которого в дальнейшем организуют все расчёты. Показатели фиксируются как средние, так и минимальные с максимальными. В качестве единиц измерения предпочтение отдают киловаттам и киловольтам, разница между которыми не существенна. Ниже описано, как проверить коэффициент пульсации светодиодных ламп.

Что такое СанПиН?

С°Ã½ÃÂøàâ ÃÂÃÂþ ÃÂòþô ÃÂðýøÃÂðÃÂýÃÂàÿÃÂðòøû ø ÃÂÃÂðýôðÃÂÃÂþò, úþÃÂþÃÂÃÂõ ýðÿÃÂðòûõýàýð ÃÂþÃÂÃÂðýõýøõ òÃÂÃÂþúþóþ ÃÂÃÂþòýàÃÂðýøÃÂðÃÂýþ-ÃÂÿøôõüøþûþóøÃÂõÃÂúþóþ ñûðóþÃÂþÃÂÃÂþÃÂýøàýðÃÂõûõýøÃÂ. àð÷ôõûàáðýÃÂøàÃÂþ÷ôðýàýð þÃÂýþòõ ôðýýÃÂàÿþ ø÷ÃÂÃÂõýøàúþüÿûõúÃÂð ÃÂðúÃÂþÃÂþò, òûøÃÂÃÂÃÂøàýð ÃÂÃÂõÃÂàöø÷ýø ÃÂõûþòõúð. áðýÃÂøàÿþ þÃÂòõÃÂõýøàÃÂÃÂÃÂðýðòûøòðõàÿÃÂøýÃÂøÿàÿÃÂøüõýõýøàõÃÂÃÂõÃÂÃÂòõýýþóþ ø øÃÂúÃÂÃÂÃÂÃÂòõýýþóþ ÃÂòõÃÂð ôûà÷ôðýøù ø ÃÂõÃÂÃÂøÃÂþÃÂøù öøûþóþ ø þñÃÂõÃÂÃÂòõýýþóþ ýð÷ýðÃÂõýøÃÂ.

ÃÂýøüðýøõ! ÃÂÃÂûø àòðàòþ÷ýøúýÃÂàòþÿÃÂþÃÂÃÂ, üþöõÃÂõ ñõÃÂÿûðÃÂýþ ÿÃÂþúþýÃÂÃÂûÃÂÃÂøÃÂþòðÃÂÃÂÃÂàò ÃÂðÃÂõ àÃÂÃÂøÃÂÃÂþü òýø÷àÃÂúÃÂðýð øûø ÿþ÷òþýøÃÂàÿþ ÃÂõûõÃÂþýðü: +7 (499) 938-45-06 ÃÂþÃÂúòð; +7 (812) 467-35-49 áðýúÃÂ-ÃÂõÃÂõÃÂñÃÂÃÂó; +7 (800) 350-10-92 ÃÂõÃÂÿûðÃÂýÃÂù ÷òþýþú ôûàòÃÂõù àþÃÂÃÂøø.

ÃÂÃÂýþòðýøõ ôûàòòõôõýøàò ôõùÃÂÃÂòøõ áðýÃÂøà1.2.3685-21:

  • ÃÂÃÂ.39 äõôõÃÂðûÃÂýþóþ ÷ðúþýð â 52-äàþà30.03.1999 ó. ëàÃÂðýøÃÂðÃÂýþ-ÃÂÿøôõüøþûþóøÃÂõÃÂúþü ñûðóþÿþûÃÂÃÂøø ýðÃÂõûõýøÃÂû .
  • ÿ.2 ÃÂþûþöõýøàþ óþÃÂÃÂôðÃÂÃÂÃÂòõýýþü ÃÂðýøÃÂðÃÂýþ-ÃÂÿøôõüøþûþóøÃÂõÃÂúþü ýþÃÂüøÃÂþòðýøø , ÃÂðýúÃÂøþýøÃÂþòðýýþóþ ÿþÃÂÃÂðýþòûõýøõü ÃÂÃÂðòøÃÂõûÃÂÃÂÃÂòð àþÃÂÃÂøùÃÂúþù äõôõÃÂðÃÂøø þà24.07.2000 N 554.
  • ÃÂþÃÂÃÂðýþòûõýøõ ÃÂûðòýþóþ óþÃÂÃÂôðÃÂÃÂÃÂòõýýþóþ ÃÂðýøÃÂðÃÂýþóþ òÃÂðÃÂð àä þà28 ÃÂýòðÃÂà2021 ó. N 2.

ÃÂýÃÂþÃÂüðÃÂøàþÃÂýþÃÂøÃÂõûÃÂýþ ÃÂÃÂõñþòðýøù ú þÃÂòõÃÂõýýþÃÂÃÂø ÃÂþôõÃÂöøÃÂÃÂàò ÃÂð÷ôõûõ V áðýÃÂøà1.2.3685-21. äø÷øÃÂõÃÂúøõ ÃÂðúÃÂþÃÂà(÷ð øÃÂúûÃÂÃÂõýøõü øþýø÷øÃÂÃÂÃÂÃÂõóþ ø÷ûÃÂÃÂõýøÃÂ).

ВНИМАНИЕ К ПУЛЬСАЦИИ СВЕТА

Человеческий глаз формировался под действием солнечного света, поэтому воспринимает его лучше всего. Но с развитием цивилизации возрастала потребность в дополнительном освещении, которое давало возможность вести активную жизнь после наступления темноты. Сегодня даже представить трудно, как бы мы жили без осветительных электроприборов.

Не так давно самыми распространенными источниками искусственного освещения были лампы накаливания. Они давали теплый мягкий свет, но стоимость его была высока. Создание энергосберегающих осветительных приборов открыло возможности для экономии электроэнергии и средств на ее оплату.

Но после исследования влияния на организм люминесцентного освещения ученые обнаружили: эти светильники отличаются недопустимо высоким коэффициентом пульсации света, поэтому небезопасны для здоровья. После замены электромагнитной ПРА на электронную удалось снизить этот показатель с 25 % до 15-20 %. Но и это значение оказалось неприемлемым для детских учреждений и помещений, в которых постоянно находятся люди, работает компьютерная техника, совершаются производственные операции.

КАКОЙ КОЭФФИЦИЕНТ ПУЛЬСАЦИИ ЛАМП МОЖНО СЧИТАТЬ НОРМОЙ

Действующие нормативные акты, а именно актуализированная редакция СП 52.13330.2011 «Естественное и искусственное освещение. Актуализированная редакция СНиП 23-05-95» и СанПиН 2.2.1/2.1.1.1278-03 определяют следующие требования к пульсации света:

  • для помещений, в которых проводятся работы, требующие высокой точности – до 10 %;
  • для помещений с возможностью появления стробоскопического эффекта – до 10 %;
  • для детских учебных и дошкольных учреждений – до 10 %;
  • для работы с компьютерной техникой – до 5%.

Величина коэффициента пульсации ламп не ограничена лишь для складских залов и производственных цехов с периодическим пребыванием в них людей и отсутствием условий для развития стробоскопического эффекта. Последний может создавать опасность на производстве, так как при совпадении частоты мерцаний света и вращения детали она будет казаться неподвижной. А это создаст высокий риск получения серьезной производственной травмы.

Что касается воздействия пульсаций света на организм, то не все они вредны для здоровья. Начнем с того, что при частоте мерцаний выше 50 Гц человеческий глаз их не воспринимает. Но это не значит, что эти пульсации остаются «невидимыми» и для организма: неразличимые для глаз мерцания светового потока регистрируются сетчаткой и мозгом. Это может вызывать головные боли, снижение настроения, ухудшение самочувствия, затяжную бессонницу и другие негативные последствия. Доказано, что световые пульсации никак не влияют на здоровье человека лишь при частоте 300 Гц и выше.

О ПУЛЬСАЦИИ ИЛИ МЕРЦАНИИ СВЕТОДИОДНЫХ ЛАМП

Абсолютно все световые электроприборы создают мерцающее освещение, в том числе мерцают светодиодные лампы . Коэффициент пульсации лампы накаливания – 15-18 %. Но мы не ощущаем видимого дискомфорта потому, что этот эффект маскируется тепловой инерцией: как известно, лампы накаливания до 90 % электрической энергии превращают в тепло. Как уже упоминалось, высок коэффициент пульсации и у люминесцентных ламп. А вот у качественных светодиодных светильников, оснащенных хорошими драйверами, этот показатель составляет менее 4 %. То есть они допустимы для установки в любых типах помещений.

Чем объясняется низкий коэффициент пульсации светодиодных ламп? Проблему мерцания светодиодных ламп удалось решить с помощью драйвера, который подает к светодиоду постоянный электрический ток. Если производитель не экономит на этом элементе светильника, прибор будет создавать освещение с уровнем пульсации ниже допустимого.

Но не все идут по этому пути. Некоторые компании используют более простые электросхемы, не устанавливают драйвер и рекламируют свою продукцию как LED-светильники переменного тока, привлекая покупателя низкой ценой. Но такие приборы производят свет с пульсацией 40 %, а при использовании диммирования этот показатель становится еще выше.

Чем измерять норму пульсации освещенности?

Чтобы определить коэффициент пульсации, вы можете сделать это двумя способами: выполнить независимый анализ или использовать компьютерную программу.
Самыми популярными калькуляторами пульсации являются Ecolight – 01 (02) и Lupin. Если вам нужно проанализировать данные на компьютере, вы можете использовать специальное программное обеспечение – Ecolight-AP.

Также напоминаем, что с 01.01.2013 г. появился новый ГОСТ Р 54945-2012 «Здания и сооружения. Методы измерения коэффициента волнистости освещения. «Наконец, ВПЕРВЫЕ (!!! – до сих пор производители внедрили алгоритм расчета пульсации« кого это волнует? ») В ГОСТ Р 54945-2012 четко и полностью сформулирована концепция. коэффициента пульсации освещенности, указывает диапазон частот пульсации, подлежащей измерению (до 300 Гц), и описывает метод измерения коэффициента пульса.
По новому ГОСТ Р 54945-2012 далеко не все люксметры-пульсметры, представленные на рынке могут быть использованы для измерения пульсаций освещенности. Мы рады сообщить нашим настоящим и будущим клиентам, что люксметры-пульсметры-яркомеры «Эколайт-01» и «Эколайт-02» прямо указаны в тексте ГОСТ Р 54945-2012, как приборы ПОЛНОСТЬЮ(!) удовлетворяющие его требованиям.

6 Проведение измерений

6.1 Измерение коэффициента пульсации освещенности проводят прямым методом измерения коэффициента пульсации освещенности на рабочей поверхности с помощью приборов для измерения коэффициента пульсации освещенности.

6.2 При измерениях коэффициента пульсации освещенности необходимо соблюдать следующие требования:

на измеряемую поверхность не должна падать тень от прибора и человека, проводящего измерения.

6.3 При комбинированном освещении рабочих мест коэффициент пульсации освещенности измеряют сначала от светильников общего освещения, затем включают светильники местного освещения в их рабочем положении и выключают общее освещение.

6.4 На одном рабочем месте проводят не менее трех измерений в течение 5 мин.

6.5 Результаты измерения коэффициента пульсации освещенности оформляют протоколом в соответствии с приложением .

Пульсации освещенности и их влияние на организм человека

Требования нормативных документов к уровню пульсации освещенности мы рассмотрим чуть позже. Предварительно хотелось бы вкратце затронуть проблему влияния пульсаций света на организм человека. К сожалению, многие производители систем освещения и инженеры по освещению относятся к этим требованиям как к бесполезному раздражающему фактору, усложняющему им жизнь. Однако, исследования воздействия пульсирующего света на организм человека, которые проводились с середины ХХ века, показали, в частности, что мозг человека воспринимает пульсации света, частотой до 300 Гц. Например, в работах  приводится ЭЭГ мозга человека (Рис.1), на которой видно, что при воздействии пульсирующего света на ЭЭГ мозга появляются навязанные пики активности с частотой пульсации света. Эти навязанные ритмы подавляют естественные биоритмы нервной системы (в данном примере, частота пульсаций света составляла 120Гц).

Рис. 1. ЭЭГ человеческого мозга в затемненной комнате (а), ЭЭГ человеческого мозга в комнате, освещенной лампами, с частотой пульсации светового потока 120 Гц

В ходе проведения тех же экспериментов было установлено, что при уровне пульсаций света 5-8% уже возникают признаки расстройства нормальной электрической активности мозга, а пульсации, глубиной 20%, вызывают такой же уровень расстройств нормальной активности мозга, как и пульсации освещенности с глубиной 100%. Также была определена критическая частота пульсаций света 300 Гц, выше которой человеческий организм воспринимает пульсирующий свет как постоянный. Аналогичные результаты были получены в работе . Надо отметить, что видимые (частотой до 60…80 Гц) и невидимые глазом (от 60…80 Гц и до 300 Гц) пульсации света оказывают разное (визуальное и невизуальное) воздействие.

Видимые глазом пульсации освещенности вызывают прямое зрительное раздражение, мы их ощущаем, они доставляют дискомфорт, утомляют зрение, нервную систему и мозг. Однако мы их видим и пытаемся сознательно или на уровне подсознания бороться с ними – ограничивать время пребывания в помещениях с пульсирующим светом, рефлекторно настраиваем зрение и мозг на ограничение влияния таких пульсаций, в конце концов меняем раздражающую нас лампу или светильник на другую, с отсутствующими пульсациями. Таким образом, вред или, по крайней мере, дискомфорт от видимых пульсаций мы хорошо ощущаем и, по мере возможности, боремся с ними.

Начиная с частот 60-80Гц (зависит от индивидуальных особенностей человека) мы перестаем визуально ощущать воздействие пульсаций освещенности – мы их не видим. Такая частота называется критической частотой слияния мельканий (КЧСМ). То есть наш мозг не успевает обрабатывать поступающую информацию об изменениях интенсивности светового потока. Однако, эти пульсации освещенности детектируются зрительными рецепторами, но не обрабатываются как визуальная информация и воздействуют напрямую на работу прочих отделов мозга. В конечном итоге, высокочастотные пульсации света влияют на гормональный фон человека, суточные биоритмы и связанные с ними работоспособность, утомляемость, эмоциональное самочувствие.

При длительном воздействии пульсации освещенности могут приводить уже к хроническим заболеваниям не только органов зрения, но и сердечно-сосудистой и нервной системы. То есть, мы видим, что требования к уровню пульсаций освещения возникли не на пустом месте и задолго до появления современных источников света.

Проблема недостатка серьезного контроля за уровнем пульсаций освещения постоянно поднимается российскими медиками . Идет постоянная работа по разработке современных стандартов качества освещения.

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий