Устройство люминесцентной лампы
Для того чтобы понять принцип работы однолампового светильника, надо познакомиться с его схемой. Светильник состоит из следующих элементов:
- стеклянная цилиндрическая трубка;
- два цоколя с двойными электродами;
- стартер, работающий на начальном этапе поджига;
- электромагнитный дроссель;
- конденсатор, подключенный параллельно питающей сети.
Колба изделия выполнена из кварцевого стекла. На начальном этапе ее изготовления из нее откачан воздух и создана среда, состоящая из смеси инертного газа и паров ртути. Последняя находится в газообразном состоянии за счет избыточного давления, созданного во внутренней полости изделия. Стенки покрыты изнутри фосфоресцирующим составом, он превращает энергию ультрафиолетового излучения в видимый человеческому глазу свет.
К выводам электродов на торцах устройства подводится переменное напряжение сети. Внутренние вольфрамовые нити покрыты металлом, который при разогреве испускает со своей поверхности большое количество свободных электронов. В качестве таких металлов могут применяться цезий, барий, кальций.
Электромагнитный дроссель представляет собой катушку, намотанную для повышения индуктивности на сердечнике из электротехнической стали с большой величиной магнитной проницаемости.
Стартер работает на начальном этапе процесса тлеющего разряда, протекающего в газовой смеси. В его корпусе находятся два электрода, один из которых биметаллический, способный под действием температуры изгибаться и изменять свои размеры. Он выполняет роль замыкателя и размыкателя электрической цепи, в которую включен дроссель.
Как самостоятельно установить осветительный прибор
Произвести монтаж конструкции не так и сложно. Работу может осилить любой. Если возникли сложности, на помощь придет пошаговая инструкция, выложенная в интернете. Самая простая схема – со стартером и дросселем. Состоит из двух отдельных устройств с персональными гнездами. В схеме присутствует два конденсатора, при этом первый включается параллельно, чтобы стабилизировать напряжение, а второй расположен в корпусе стартера, и позволяет увеличить продолжительность стартового импульса. Схема носит название «электромагнитный балласт».
Функционирование схемы подключения люминесцентных ламп со стартером выглядит следующим образом:
- Подключение питания.
- Ток проходит через дроссель, попадая в первую вольфрамовую спираль.
- Посредством стартера перемещается во вторую спираль, и уходит сквозь нулевой проводник.
- Вольфрамовые нити начинают раскаляться, равно как и контакты стартера.
- Контактов у стартера два: неподвижный и подвижный биметаллический. В обычном состоянии они разомкнуты.
- Проходящий ток нагревает биметаллические контакты, что приводит к его изгибанию. При сгибании он смыкается с неподвижным контактом.
- Соединенные контакты способствуют возрастанию тока в цепи (в среднем в 2 – 3 раза). В качестве ограничителя выступает дроссель.
- Происходит резкий скачок, что приводит к быстрому разогреванию электродов.
- При остывании биметаллической пластины стартера контакты разрываются. Разрыв приводит к резкому скачку напряжения на дросселе. Благодаря высокому напряжению электроны пробивают аргоновую среду. Появляется розжиг, и лампа начинает функционировать в рабочем режиме.
Как проверить люминесцентную лампу
Неисправности могут визуально проявляться таким образом.
Деградация люминофора в ЛЛ
Обратимся к устройству самой лампы. С двух сторон у нее размещены электроды, они делаются из вольфрама, так как это тугоплавкий металл. Для увеличения срока службы эти электроды покрываются щелочным соединением. Это способствует облегчению зажигания тлеющего разряда и защищает электроды. Часты включения и выключения влекут за собой частое нагревание и остывание защитного покрытия. Таким образом со временем оно просто отслаивается, образуются незащищенные участки на вольфрамовом электроде. В момент запуска вольфрамовая нить разогревается неравномерно. Открытые участки разогреваются сильнее происходит сначала точечное выгорание, со временем произойдёт разрушение электрода. О начале выгорания и свидетельствует такое потемнение. Это — щелочные соединения, которые осаждаются на люминофорном слое. Но даже если электрод находится в обрыве, а колба лампы цела и люминофор не обсыпался, то лампу еще возможно какое-то время использовать. При этом применяется схема умножителя.
Целостность электродов можно проверить еще и мультиметром. Режим прозвонки (значок диода на приборе). В случае целостности контактов, Вы услышите писк, как при замыкании щупов. Можно воспользоваться режимом омметра, прибор должен показать сопротивление 3-16 Ом. В случае индикации бесконечного сопротивления электрод находится в обрыве и в традиционных схемах (также как и с ЭПРА) использование принципиально невозможно.
При использовании классической схемы со стартером и дросселем, лампу, у которой хотя бы один из электродов находится в обрыве зажечь не удастся. Если балластный дроссель находится в обрыве, то лампа также не загорится. Исправный дроссель должен обладать сопротивлением 60 Ом, плюс-минус 5 Ом. Вышедший из строя дроссель можно определить «на глаз» по косвенным признакам: характерный запах, пятна.
Характеристики
Лампы различаются друг от друга конструкцией и техническими характеристиками
Для потребителя важно знать свойства тех или иных источников света. Ознакомимся с ними подробнее
Мощность. Измеряется в Вт. Мощность говорит о количестве электричества, которое потребляет источник света. Чем она больше, тем ярче светит лампочка. Одновременно большая мощность говорит о больших расходах на электроэнергию и размере счетов за нее.
Поскольку номинальная мощность напрямую зависит от конструкции, то для сравнения разных типов ламп удобнее использовать другую характеристику – световой поток.
Световой поток. Измеряется в лм. Световой поток показывает, насколько ярко светит лампочка. Новые модели источников света (люминесцентные и светодиодные) имеют большую яркость при меньшей мощности. Именно за счет этого достигается энергосбережение.
Сравнительная характеристика мощностей самых популярных бытовых лампочек со световым потоком 1200 лм приведена в таблице.
Таким образом, при равном световом потоке мощность светодиодных ламп более чем в пять раз меньше, чем у ламп накаливания.
Светоотдача. Измеряется в лм/Вт. Светоотдача показывает световой поток в расчете на 1 Вт мощности. Также удобный параметр для сравнения разных типов осветительных приборов. Чем больше светоотдача, тем меньшая мощность обеспечивает максимальную яркость.
Коэффициент цветопередачи (Ra, CPI). Показывает, насколько искажаются реальные цвета при искусственном освещении. Обозначается цифрами от 1 до 100. Чем ниже значение коэффициента, тем сильнее искажаются оттенки. Индекс 100 означает, что цвета передаются максимально точно. Для зрения в помещении безопаснее использовать источники света с Ra не менее 80.
Цветовая температура. Измеряется в К. Определяет теплоту света, ведь разные цвета в зависимости от освещения воспринимаются глазом по-разному.
Цветовая температура
Различают несколько типов цветовых температур:
- 2700-3200 – теплый белый;
- 3300-4000 – нейтральный белый;
- 4000-5000 – холодный белый;
- 5000-6000 – дневной свет;
- свыше 6000 – холодный дневной.
Цветовая температура заметно влияет на настроение и работоспособность человека. При выборе ламп, особенно для домашнего и рабочего использования, внимательно изучите маркировку. Помните, что теплый цвет способствуют расслаблению, а холодные – бодрости и работоспособности. Но в больших количествах холодный свет угнетает нервную и зрительную систему. Подробнее можно почитать в статье о цветовой температуре
Срок службы. Это количество часов, которое прослужит источник света. На упаковке обычно указывается срок службы при работе в идеальных условиях. В реальных он может отличаться от заявляемого производителем. Сроки службы популярных бытовых лампочек приведены в таблице.
К тому же у многих моделей источников света со временем падает яркость. Это происходит из-за физических процессов, которые делают возможным само свечение. К таким лампам относятся светодиодные, газоразрядные.
Угол рассеивания света. Это угол, на который расходится световой поток. Лампа накаливания светит во все стороны на 360⁰. Но не все виды источников света могут похвастаться тем же. Например, из-за конструктивных особенностей led (и других типов) угол рассеивания составляет от 30⁰ до 360⁰.
Угол рассеивания света
Исходя из задачи светильника, выбирается оптимальный угол. Для точечной подсветки достаточно 30⁰, а для общего освещения лучше выбирать максимальный угол.
Коэффициент пульсации (мерцания). Характеризует равномерность освещения. Измеряется в процентах. Чем меньше коэффициент, тем ровнее световой поток, тем меньше будут уставать глаза. В идеале для дома и офиса стоит выбирать источники света с коэффициентом пульсации около 5%. Лампы с коэффициентом свыше 35% опасны для зрения.
Как работает лампа
Принцип работы любой люминесцентной лампы включает в себя подачу напряжения на расположенные внутри колбы электроды. Между электродами возникает тлеющий разряд, который поддерживается находящимся внутри колбы инертным газом или парами ртути.
Рисунок 7. Принцип работы
Тлеющий разряд порождает излучение в ультрафиолетовом диапазоне, которое через нанесенный на колбу люминофор превращается в видимый свет нужного оттенка.
Чтобы получить ультрафиолетовое излучение, используются газоразрядные лампы. Обычное стекло ультрафиолет не пропускает, поэтому для изготовления колбы используется специальное кварцевое стекло. Люминофорное покрытие в данном случае отсутствует. Приборы широко используются в соляриях и при обеззараживании помещений.
Люминесцентные светильники линейного типа
Линейные люминесцентные светильники предназначены для универсального использования в быту (подсветка зеркал, мебели, растений), офисных и общественных помещениях. При эксплуатации следует учитывать наличие в световом спектре ультрафиолетового излучения, поэтому нельзя долго смотреть прямо на лампу.
К линейным светильникам нужно подбирать лампы T4 и T5 (цоколь G5). При покупке будет не лишним поинтересоваться цветовой температурой (от теплой до холодной), а также габаритами прибора. Лучше отдать предпочтение проверенному производителю, чем пытаться сэкономить на дешевых подделках, ведь от качества напрямую зависит срок службы.
Подключение к сети
Газоразрядные лампы не могут напрямую подключаться в электросеть это связано с высоким сопротивлением при холодном состоянии и отрицательном дифференциальным сопротивлением.
Исправить эти проблемы можно путем применения балластов. Самые распространенные – это ЭмПРА (электромагнитный балласт) и ЭПРА (электронный).
ЭмПРА представляет собой электромагнитный дроссель, который подключается последовательно с лампой. Последовательно со спиралями накала подключается стартер, который является неоновой лампой с биметаллическими электродами и конденсатором. Преимущества – простота конструкции, надежность, долговечность. Недостатки – долгий пуск, требуется большое количество электроэнергии, гул во время работы, мерцание, крупные размеры.
ЭПРА питает лампочку высокочастотным напряжением, благодаря чему исключается мигание. Использует два варианта пуска ламп:
- Холодный. Светильник включается сразу же после подачи напряжения.
- Горячий. Электроды прогревается и источник загорается через 0,5—1 секунду.
К преимуществам относят долгий срок службы, меньшее энергопотребление, возможность диммирования на некоторых моделях, бесшумность.
Размеры и эффективность
Для того чтобы получить максимальный эффект от электрического разряда, во внутреннем пространстве колбы должна поддерживаться определенная температура. В этом случае ультрафиолетовое излучение ртутных паров будет наибольшим. Данный параметр напрямую связан с диаметром колбы. Дело в том, что плотность тока во всех лампах должна быть примерно одинаковой. Этот показатель определяется путем деления величины тока на площадь сечения стеклянного цилиндра.
В связи с этим, лампы с колбами одинакового диаметра, но с различной мощностью, способны работать при одном и том же номинальном токе. Между падением напряжения и длиной цилиндра существует прямая пропорциональная зависимость, определяющая класс энергоэффективности. То есть, чем длинее лампа, тем выше ее мощность, что наглядно отражено на рисунке. При диаметре Т5 и 13 т длина составит 52 см, 21 ватт – 85 см, 28 ватт – 115 см. Диаметр Т8 и мощность 15 ватт соответствуют длине 44 см.
Большие размеры люминесцентных ламп изначально делали их не совсем удобными в использовании, поскольку им требовались и светильники с аналогичными габаритами. Производители всегда хотели уменьшить это соотношение, используя различные способы. Однако нельзя было просто снизить длину колбы и увеличить ток разряда, чтобы достичь установленной мощности. Это привело бы к возрастанию температуры внутри колбы и увеличению давления ртутных паров. При таких параметрах световая отдача ламп заметно снижается.
Инженерная мысль пошла другим путем, и размеры изделий были снижены путем изменения их конфигурации. Длинные цилиндры сгибались пополам или соединялись в кольцо, что позволило получить источники света U-образной и кольцевой формы с уменьшенными габаритами без потерь мощности. Одновременно удалось повысить коэффициент мощности и снизить коэффициент пульсации.
Окончательно проблема разрешилась лишь с появлением люминофоров, устойчивых к высоким электрическим нагрузкам. В результате, диаметр колб значительно снизился и достиг 12 мм. Общая длина ламп еще больше сократилась за счет многократных изгибов тонких стеклянных цилиндров. Появились компактные изделия, с таким же внутренним устройством и принципом работы, как у обычных ламп линейного типа.
Принципы работы
Во время работы ЛЛ между двумя электродами, расположенными на ее краях, горит дугообразный разряд, который приводит к созданию УФ-свечения внутри колбы, наполненной газом, в составе которого ртутные пары.
Зрение человека невосприимчиво к УФ диапазону свечения, поэтому внутренние стенки колбы обработаны люминофорным составом, имеющим свойства поглощения ультрафиолета с дальнейшим преобразованием его в видимое белое свечение. Ортофосфаты кальция-цинка и галофосфаты лежат в основе люминофорного слоя. Также люминофор может быть насыщен другими веществами с целью получения определенного оттенка света. Термоэлектронная эмиссия электродов с катода создает поддержку электрической дуги в ЛДС. Дальнейшее разогревание катодов путем пропуска через них тока или ионной бомбардировки приводит к запуску устройства.
Технические характеристики
Технические характеристики конкретного осветительного прибора зашифрованы в маркировке и указаны на упаковке. Это информация о мощности лампы, типе цоколя, размерах, цветовой температуре, сроке службы.
Большая часть современных люминесцентных приборов способна проработать 8-12 тыс. часов. Показатель зависит от типа и размера прибора.
Эффективность выражена показателем 80 Лм/Вт, что значительно больше, чем у традиционных ламп накаливания. При работе выделяется умеренное количество тепла, устройства устойчивы к ветру, способны стабильно функционировать при температуре от +5 до +55 °C. Если присутствует термоустойчивое покрытие, прибор можно использовать при +60 °C.
Рисунок 6. Технические характеристики
Цветовая температура обычно составляет от 2700 до 6000 К. Коэффициент полезного действия может достигать 75%.
Подключение к сети
Простейшая схема подключения ламп дневного света выполнена на основе стартера, дросселя (балласта) и конденсатора. Сами лампы не предусматривает их прямого включения в электрическую цепь, так как в отключенном состоянии люминесцентные устройства имеют высокое сопротивление, преодолеть которое можно только импульсом высокого напряжения.
Возможно также последовательное соединение двух ламп, при этом стартеров будет 2 штуки, а дроссель один, но он должен быть рассчитан на суммарную мощность ламп. Схема светильника на 2 лампы приведена ниже. На схеме нет конденсатора, но он также может быть установлен на входе светильника.
Дроссель (балласт), включается в электроцепь в качестве дополнительного сопротивления, предохраняющего от короткого замыкания. Стартер позволяет в моменты высокого сопротивления лампы зарядить дроссель, одновременно прогреть спирали лампы.
Лампу дневного света без дросселя невозможно запустить. От того, как устроена схема подключения, зависит общее энергопотребление всех устройств, подключенных вместе с люминесцентным источником света к электрической цепи.
Электромагнитный дроссель (ЭмПРА)
Дроссель постоянного индуктивного сопротивления, подключаемый только в цепь с ЛЛ определенной мощности. Сопротивление включенного в цепь ЭмПРА при включении начинает играть роль ограничителя подачи тока к светильнику.
Конструкция ЭмПРА проста и дешева в производстве, соответственно, дешевле и лампы с электромагнитным балластом. Несмотря на свою дешевизну и простоту обладает рядом недостатков:
- длительность запуска до 3 секунд (время зависит от износа лампы);
- высокое потребление электроэнергии дросселем;
- постепенное возрастание частоты в пластинах дросселя из-за его износа;
- мерцание с двухкратной частотой электросети (100 или 120 Гц) при включении, которое отрицательно влияет на зрение;
- массивность и габаритность люминесцентных устройств (в сравнении с аналогами ЭПРА);
- вероятный отказ в работе электрической цепи с дроссельным механизмом при температуре ниже нуля по Цельсию;
- короткое замыкание, приводящее к припайке электродов дросселя к устройству, после чего его невозможно снять.
Схема подключения газоразрядных люминесцентных ламп с ЭмПРА предусматривает наличие стартера, регулирующего зажигание ЛЛ. Однако он дополнительно потребляет электроэнергию.
Электронный дроссель
Электронный пускорегулирующий аппарат (ЭПРА) обеспечивает лампы высокочастотным питанием 25–133 кГц. В момент включения ЛДС с электронным дросселем человек в течение короткого времени наблюдает яркое мерцание. С помощью электронного балласта реализовано два принципа работы по включению ламп.
Холодный запуск
Сразу запускает устройство, но наносит значительный вред электродам. Лампы с таким вариантов запуска рассчитаны на малую частоту включения/отключения в течение дня.
Горячий запуск
Перед включением лампы, в течение 1 секунды, происходит разогрев электродов, затем она работает. Также присутствует тепловой индикатор, обеспечивающей устройство защитой от перегрева.
ЛЛ на основе ЭПРА более экономичные, чем и заполучили значительную популярность, чего нельзя сказать об аналогах ЭмПРА.
Принцип работы люминесцентного светильника
Как работает люминесцентная лампа? Сначала образуются свободно движущиеся электроны. Это происходит в момент включения питающего переменного напряжения в областях вокруг вольфрамовых нитей накаливания внутри стеклянного баллона.
Эти нити за счет покрытия их поверхности слоем из легких металлов по мере нагрева создают эмиссию электронов. Внешнего напряжения питания пока недостаточно для создания электронного потока. Во время движения эти свободные частицы выбивают электроны с внешних орбит атомов инертного газа, которым заполнена колба. Они включаются в общее движение.
На следующем этапе в результате совместной работы стартера и электромагнитного дросселя создаются условия для увеличения силы тока и образования тлеющего разряда газа. Теперь наступает время организации светового потока.
Движущиеся частицы обладают достаточной кинетической энергией, необходимой для перевода электронов атомов ртути, входящей в состав лампы в виде небольшой капли металла, на более высокую орбиту. При возвращении электрона на прежнюю орбиту высвобождается энергия в виде света ультрафиолетового спектра. Преобразование в видимый свет происходит в слое люминофора, покрывающего внутреннюю поверхность колбы.
Для чего нужен дроссель в люминесцентной лампе
Это устройство работает с момента старта и на протяжении всего процесса свечения. На разных этапах задачи, выполняемые им, различны и могут быть разделены на:
- включение светильника в работу;
- поддержание нормального безопасного режима.
На первом этапе используется свойство катушки индуктивности создавать импульс напряжения большой амплитуды за счет электродвижущей силы (ЭДС) самоиндукции при прекращении протекания переменного тока через ее обмотку. Амплитуда этого импульса напрямую зависит от величины индуктивности. Он, суммируясь с переменным сетевым напряжением, позволяет кратковременно создать между электродами напряжение, достаточное для разряда в лампе.
При созданном постоянном свечении дроссель выполняет роль ограничивающего электромагнитного балласта для цепи дуги с низким сопротивлением. Его цель теперь – стабилизация работы для исключения дугового замыкания. При этом используется высокое индуктивное сопротивление обмотки для переменного тока.
Принцип работы стартера люминесцентной лампы
Устройство предназначено для управления процессом запуска светильника в работу. При первоначальном подключении сетевого напряжения оно полностью прикладывается к двум электродам стартера, между которыми существует небольшой промежуток. Между ними возникает тлеющий разряд, в котором температура увеличивается.
Один из контактов, выполненный из биметалла, имеет возможность под действием температуры изменять свои размеры, изгибаться. В этой паре он выполняет роль подвижного элемента. Возрастание температуры приводит к быстрому замыканию электродов между собой. По цепи начинает протекать ток, это приводит к понижению температуры.
Через небольшой промежуток времени происходит разрыв цепи, что является командой для вступления в работу ЭДС самоиндукции дросселя. Последующий процесс был описан выше. Стартер понадобится только на этапе следующего включения.
Как проверить устройство с лампами
Исправность устройства определяется компонентами, отвечающими за подачу тока – дроссель, стартер, конденсатор. О неисправности дросселя можно понять по гулу светильника, перегреву, мерцанию, потемнению лампы. Чтобы проверить дроссель, нужно вытащить стартер из светильника и накоротко замкнуть контакты в патроне. Лампу вытаскивают и закорачивают контакты в патронах со всех сторон. Щупы мультиметра устанавливаются к контактам в режиме измерения сопротивления. При обрыве мультиметр покажет бесконечное сопротивление, межвитковое замыкание покажет значение около нуля. Сгоревший дроссель черного цвета с паленым запахом не подлежит ремонту и его следует выбросить.
Если лампа мерцает и не загорается – проблема со стартером. Для его проверки потребуется светильник, так как отдельно его контакты разомкнуты. Схема проверки включает в себя лампу 60 Вт и стартер, которые последовательно подключаются к сети.
Неисправный конденсатор уменьшает КПД до 40%. В рабочем состоянии КПД достигает 90%. Его исправность проверяется мультиметром с соответствующей функцией.
Люминесцентная лампа – наиболее распространенный, экономичный, недорогой прибор для освещения различных помещений. Встретить люминесцентные источники света можно везде – в подсветке уличных витрин, в квартирах, в школах и офисах, в больницах и промышленных зданиях. Целесообразно использовать люминесцентные светильники для освещения больших площадей – стадионов, площадок, дворов. Широкое распространение связано с их высокой светоотдачей и низкой стоимостью.
Принцип работы компактных люминесцентных ламп.
Внутри колбы расположены вольфрамовые электроды. На них наносится слой активированного вещества. Применяется смесь оксидов бария, стронция, кальция. Принципиально, по сравнению с источниками дневного света (лл) нового ничего не добавилось. КЛЛ можно считать естественным развитием ЛДС. По аналогии, сама колба заполнена инертным газом. Внутри колбы находится небольшое количество жидкого металла – ртути. Она необходима для облегчения тлеющего разряда. Во время работы лампы ртуть переходит из жидкого состояния в парообразное.
При разряде большая часть излучения находится в ультрафиолетовой части спектра. Этот свет мы видеть не можем, более того такое излучение может быть вредно. После ионизации газа и паров ртути, ультрафиолет воздействует на слой люминофора. В результате мы видим свечение. Оттенок зависит от химического состава. По большей части, именно люминофор определяет световые характеристики компактной люминесцентной лампы.
Как известно люминесцентные источники света не могут работать без пускорегулирующего устройства. Пускатель должен дать импульс для зажигания лампы (в зависимости от мощности – от 1кВ), между электродами должен образоваться электрический пробой. По мере испарения ртути разряд усиливается. Сопротивление между электродами падает, сила тока растет. С ним растет и яркость. Потому ток и напряжение необходимо ограничивать и поддерживать на определенном уровне. Напряжения горения существенно ниже напряжения зажигания. Стремление к миниатюризации продиктовало необходимость встраивания электронной пуско-регулирующей аппаратуры в саму лампу. Точнее, плата с электроникой расположена в корпусе между цоколем и разрядной трубкой. Естественно, здесь уже нет громоздкого дросселя и стартера. Частота разрядов находится в районе 50 кГц. Соответственно глаз человека не может воспринимать мерцание. Т.е. это в одну тысячу раз больше, чем с обычными лампами дневного света. Коэффициент мощности приближается к единице, соответственно, отсутствует реактивная составляющая.