Схема подключений
Для того, чтобы узнать значение сопротивления его надо измерить. Сделать это можно с помощью включения его в измерительную цепь. Для этого используют 3 типа схем, которые отличаются между собой количеством проводов и достигаемой точностью измерений:
- 2-проводная цепь. Содержит минимальное количество проводов, а значит, самый дешевый вариант. Однако, при выборе данной схемы достичь оптимальной точности измерений не получится — к сопротивлению термометра будет прибавляться сопротивление используемых проводов, которые и будут вносить погрешность, зависимую от длины проводов. В промышленности такая схема применяется редко. Используется лишь для измерений, где не важна особая точность, а датчик находится в непосредственной близости от вторичного преобразователя. 2-проводная схема изображена на левом рисунке.
- 3-проводная цепь. В отличии от предыдущего варианта здесь добавляется дополнительный провод, накоротко соединённый с одним из двух других измерительных. Его основная цель — возможность получить сопротивление подключенных проводов и вычесть это значение (компенсировать) из измеренного значения от датчика. Вторичный прибор, кроме основного измерения, дополнительно измеряет сопротивление между замкнутыми проводами, получая тем самым значение сопротивления проводов подключения от датчика до барьера или вторичника. Так как провода замкнуты, то это значение должно быть равно нулю, но по факту из-за большой длины проводов, это значение может достигать нескольких Ом. Далее эта погрешность вычитается из измеренного значения, получая более точные показания, за счёт компенсации сопротивления проводов. Такое подключение применяется в большинстве случаев, поскольку является компромиссом между необходимой точностью и приемлемой ценой. 3-х проводная схема изображена на центральном рисунке.
- 4-проводная цепь. Цель такая же, что и при использовании трехпроводной схемы, но компенсация погрешности идёт обоих измерительных проводов. В трехпроводной схеме значение сопротивления обоих измерительных проводов принимается за одинаковое значение, но по факту оно может незначительно отличаться. За счет добавления ещё одного четвёртого провода в четырехпроводной схеме (закороченного со вторым измерительным проводом), удается получить отдельно его значение сопротивления и почти полностью компенсировать всё сопротивление от проводов. Однако, данная цепь является более дорогой, так как требуется четвёртый проводник и поэтому реализуется или на предприятиях с достаточным финансированием, или при измерении параметров, где нужна большая точность. 4-х проводную схему подключений вы можете увидеть на правом рисунке.
Схема подключений
Для того, чтобы узнать значение сопротивления его надо измерить. Сделать это можно с помощью включения его в измерительную цепь. Для этого используют 3 типа схем, которые отличаются между собой количеством проводов и достигаемой точностью измерений:
- 2-проводная цепь. Содержит минимальное количество проводов, а значит, самый дешевый вариант. Однако, при выборе данной схемы достичь оптимальной точности измерений не получится — к сопротивлению термометра будет прибавляться сопротивление используемых проводов, которые и будут вносить погрешность, зависимую от длины проводов. В промышленности такая схема применяется редко. Используется лишь для измерений, где не важна особая точность, а датчик находится в непосредственной близости от вторичного преобразователя. 2-проводная схема изображена на левом рисунке.
- 3-проводная цепь. В отличии от предыдущего варианта здесь добавляется дополнительный провод, накоротко соединённый с одним из двух других измерительных. Его основная цель — возможность получить сопротивление подключенных проводов и вычесть это значение (компенсировать) из измеренного значения от датчика. Вторичный прибор, кроме основного измерения, дополнительно измеряет сопротивление между замкнутыми проводами, получая тем самым значение сопротивления проводов подключения от датчика до барьера или вторичника. Так как провода замкнуты, то это значение должно быть равно нулю, но по факту из-за большой длины проводов, это значение может достигать нескольких Ом. Далее эта погрешность вычитается из измеренного значения, получая более точные показания, за счёт компенсации сопротивления проводов. Такое подключение применяется в большинстве случаев, поскольку является компромиссом между необходимой точностью и приемлемой ценой. 3-х проводная схема изображена на центральном рисунке.
- 4-проводная цепь. Цель такая же, что и при использовании трехпроводной схемы, но компенсация погрешности идёт обоих измерительных проводов. В трехпроводной схеме значение сопротивления обоих измерительных проводов принимается за одинаковое значение, но по факту оно может незначительно отличаться. За счет добавления ещё одного четвёртого провода в четырехпроводной схеме (закороченного со вторым измерительным проводом), удается получить отдельно его значение сопротивления и почти полностью компенсировать всё сопротивление от проводов. Однако, данная цепь является более дорогой, так как требуется четвёртый проводник и поэтому реализуется или на предприятиях с достаточным финансированием, или при измерении параметров, где нужна большая точность. 4-х проводную схему подключений вы можете увидеть на правом рисунке.
Типовые конструкции платиновых термосопротивлений
Наиболее распространение получило исполнение ЧЭ в ПТС, называемое «свободной от напряжения спиралью», у зарубежных изготовителей оно проходит под термином «Strain free». Упрощенный вариант такой конструкции представлен ниже.
Конструктивное исполнение «Strain free»
Обозначения:
- А – Выводы термоэлектрического элемента.
- В – Защитный корпус.
- С – Спираль из платиновой проволоки.
- D – Мелкодисперсный наполнитель.
- E – Глазурь, герметизирующая ЧЭ.
Как видно из рисунка, четыре спирали из платиновой проволоки, размещают в специальных каналах, которые потом заполняются мелкодисперсным наполнителем. В роли последнего выступает очищенный от примесей оксид алюминия (Al2O3). Наполнитель обеспечивает изоляцию между витками проволоки, а также играет роль амортизатора при вибрациях или когда происходит ее расширение, вследствие нагрева. Для герметизации отверстий в защитном корпусе применяется специальная глазурь.
На практике встречается много вариаций типового исполнения, различия могут быть в дизайне, герметизирующем материале и размерах основных компонентов.
Исполнение Hollow Annulus.
Данный вид конструкции относительно новый, она разрабатывалась для использования в атомной индустрии, а также на объектах особой важности. В других сферах датчики данного типа практически не применяются, основная причина этого высокая стоимость изделий
Отличительные особенности высокая надежность и стабильные характеристики. Приведем пример такой конструкции.
Пример исполнения «Hollow Annulus»
Обозначения:
- А – Выводы с ЧЭ.
- В – Изоляция выводов ЧЭ.
- С – Изолирующий мелкодисперсный наполнитель.
- D – Защитный корпус датчика.
- E – Проволока из платины.
- F – Металлическая трубка.
ЧЭ данной конструкции представляет собой металлическую трубку (полый цилиндр), покрытый слоем изоляции, сверху которой наматывается платиновая проволока. В качестве материала цилиндра используется сплав с температурным коэффициентом близким к платине. Изоляционное покрытие (Al2O3) наносится горячим напылением. Собранный ЧЭ помещается с защитный корпус, после чего его герметизируют.
Для данной конструкции характерна низкая инерционность, она может быть в диапазоне от 350,0 миллисекунд до 11,0 секунд, в зависимости от того используется погружаемый или монтированный ЧЭ.
Пленочное исполнение (Thin film).
Основное отличие от предыдущих видов заключается в том, что платина тонким слоем (толщиной в несколько микрон) напыляется на керамическое или пластиковое основание. На напыление наносится стеклянное, эпоксидное или пластиковое защитное покрытие.
Миниатюрный пленочный датчик
Это наиболее распространенный тип конструкции, основные достоинства которой заключаются в невысокой стоимости и небольших габаритах. Помимо этого пленочные датчики обладают низкой инерционностью и относительно высоким внутренним сопротивлением. Последнее практически полностью нивелирует воздействие сопротивления выводов на показания прибора (таблицы термосопротивлений можно найти в сети).
Что касается стабильности, то она уступает проволочным датчикам, но следует учитывать, что пленочная технология усовершенствуется год от года, и прогресс довольно ощутим.
Стеклянная изоляция спирали.
В некоторых дорогих ТС платиновую проволоку покрывают стеклянной изоляцией. Такое исполнение обеспечивает полную герметизацию ЧЭ и увеличивает влагостойкость, но сужает диапазон измеряемой температуры.
Тонкая пленка
Тонкопленочные элементы имеют чувствительный фрагмент, который формируется путем нанесения очень тонкого слоя резистивного материала, обычно платинового, на керамическую подложку (покрытие). Этот слой обычно имеет толщину от 10 до 100 нг (от 1 до 10 нанометров).
Эта пленка затем покрывается эпоксидной смолой или стеклом, которое помогает защитить ее, а также действует, как средство от натяжения для внешних подводящих проводов. Недостатки этого типа заключаются в том, что они не так стабильны, как их проволочные или спиральные аналоги.
Они также могут быть использованы только в ограниченном температурном диапазоне из-за разных скоростей расширения подложки и осаждения с сопротивлением, что дает эффект «тензометрического датчика», который можно увидеть в коэффициенте удельной температуры. Эти элементы работают при температурах до 300 °C (572 °F) без дополнительной упаковки, но могут выдерживать до 600 °C (1112 °F), когда они надлежащим образом заключены в стекло или керамику. Специальные высокотемпературные термопреобразователи сопротивления могут использоваться при температуре до 900 °C (1652 °F) с правильной герметизацией.
5 Общие технические требования
5.1 Технические характеристики
5.1.1 Значения относительного сопротивления ТС — в соответствии с приведенными в таблице 2.
Таблица 2 — Относительное сопротивление ТС Wt | ||||||||||||||||||||
|
5.1.2 Значения нестабильности ТС (в температурном эквиваленте) нс должны превышать приведенных в таблице 3.
Таблица 3 — Нестабильность ТС | ||||||||||||||||||||||||||
| ||||||||||||||||||||||||||
Нестабильность ТС Д / в температурном эквиваленте рассчитывают по формуле |
Д / = Д R/(dR/dt),, (1)
где д / — нестабильность в температурном эквиваленте, *С;
Д R,— изменение сопротивления /?,, Ом;
(dR/di), — значение производной функции изменения сопротивления ТС в зависимости от температуры при температуре /, Ом/*С.
5.1.3 Значения доверительной погрешности ТС при доверительной вероятности 0,95 для ТСПН в диапазоне применения, ПТС в диапазоне применения ниже 0 *С, ПТС и ВТС при измерениях в реперных точках должны бьггь нс более приведенных в таблице 4.
Таблица 4 — Доверительная погрешность ТС | |||||||||||||||||||||||||||||||||||||||||||||
|
5.1.4 Значение электрического сопротивления изоляции между выводами и корпусом ПТС и ТСПН при температуре окружающей среды (20 ± 5) *С и относительной влажности воздуха (60 ± 15) % должно бьггь не менее 1 10* Ом. Значение электрического сопротивления изоляции
ВТС при температуре верхнего предела применения должно бьггь не менее 5 • 106 Ом.
3
5.1.5 Значения измерительного тока должны соответствовать приведенным в таблице 5. Таблица 5 — Измерительный ток
Тип ТС | Диапазон температур, *С | Номинальное сопротивление Rо. Ом | Измерительный ток, мА |
От -259 до -226 | 25 | 4 | |
ТСПН | От -259 до -226 | 50; 100 | 2 |
От -226 до + 100 | 25; 50; 100 | 1 | |
ПТС | От —196 до +660 | 10; 25; 50 | 1 |
ВТС | От 419 до 1085 | 0,25; 0,6; 1; 2,5 | 10 |
5.1.6 Чувствительный элемент ТС изготовляют из алатиновой проволоки марки ПлО или Пл1 по ГОСТ 21007.
5.1.7 ТСПН заполняют газообразным гелием, а ПТС и ВТС — воздухом при давлении, значение которого составляет 2 – 101 Па.
5.1.8 Длина погружаемой части ПТС и ВТС — не менее 550 мм. внешний диаметр охранной трубки — не более 7,5 мм. Длина погружаемой части ТСПН — от 30 до 60 мм, а внешний диаметр — нс более 6 мм.
5.1.9 Вероятность безотказной работы ТС за 1000 ч или 50 циклов охлаждение — нагрев от максимальной температуры до (20 ± 5) *С при доверительной вероятности Р~ 0,8 — не менее 0,85.
5.1.10 Вид климатического исполнения ТС — УХЛ4 по ГОСТ 15150.
5.1.11 Требования к вибропрочности ТС должны быть установлены в технической документации на ТС конкретного типа.
5.1.12 Требования, относящиеся к сохраняемости, ремонтопригодности, транспортированию и хранению ТС, должны быть установлены в технической документации на ТС конкретных типов.
5.2 Комплектность
В комплект поставки должны входить футляр, техническое описание и паспорт ТС.
5.3 Маркировка
На ТС должны быть нанесены: условное наименование (тип), заводской номер, товарный знак или наименование за вода-изготовителя. Указанные обозначения разрешается наносить на футляр малогабаритных ТСПН и вносить их в техническое описание или паспорт.
5.4 Упаковка
ТС должен быть упакован в специальный футляр.
УДК 536.531 : 669.231 : 006.354 ОКС 17.020 Т88.2 ОКСТУ 0008
Ключевые слова: температура, термометры сопротивления, относительное сопротивление, реперные точки, средства измерений, нестабильность 2
Редактор Л В Афанасенко Технический редактор В.Н. Прусакова Корректор В.Е. Нестерова Компьютерная верстка ЕН Мартемъяновой
Изд. лиц. № 021007 от 10.08.95. Сдано в набор 25.12.98 Подписано в печать 27.01.99. Уел. псч. л. 0,93. Уч.-иэд. л. 0,47.
Тираж 296 экз. С1760. Зак. 54.
1
2
ИПК Издательство стандартов, 107076, Москва, Колодезный пер., 14.
Набрано в Издательстве на ПЭВМ Филиал ИПК Издательство стандартов — тип. “Московский печатник”, Москва, Лялин пер., 6.
Плр № 080102
Правильный выбор — точные результаты
Ключевым моментом для успешного применения датчиков температуры является постановка основополагающих вопросов и подбор датчика, наиболее пригодного для поставленных задач и конкретных технологических процессов с учетом всех имеющихся данных. В качестве примера можно привести принятие решения об использовании датчика температуры на участке трубопровода с постоянно изменяющимися условиями при непрерывной вибрации и изменении температуры в диапазоне –200…+300 °C. Целью такого решения является достижение максимально возможной точности, несмотря на описанные непростые условия. Для указанного диапазона температур пригодны термодатчики обоих типов. Хорошо известно, что ТП обладают высокой стойкостью к вибрации, поэтому на первый взгляд может показаться, что ТП являются хорошим вариантом решения поставленной задачи. Тем не менее в данном конкретном случае требуется выполнение измерений с максимально возможной точностью. Правильным выбором для данной задачи будет использование тонкопленочных ТС. Известно, что тонкопленочные ТС отличаются более высокой стойкостью к вибрации по сравнению с проволочными и обеспечивают более высокую точность измерений по сравнению с термопарами.
Приведем еще один пример: измерение температуры в реакторе в диапазоне +550…+900 °C при низком уровне вибрации. Поставлена цель измерения температуры с точностью ±5 °C. ТС дают стабильно точные показания, особенно в условиях невысокой вибрации. Однако не стоит забывать о диапазоне температур. Как правило, ТС не следует использовать при температурах свыше +850 °C. Поскольку температура данного процесса обработки может подниматься до +900 °C, следует остановить свой выбор на ТП. Вероятность получения неверных показаний датчиков или их отказа повышается при их использовании в неподходящих диапазонах температур.
Чем отличается платиновый термометр сопротивления (ТСП) от аналогов
Чтобы понять чем обусловлена высокая популярность такого вида приборов, стоит пару слов сказать о принципе действия всех вариантов. Термометры сопротивления предназначены для подключения к измерительному оборудованию и для непосредственного замера уровня тепловой энергии. Считывание показаний осуществляется за счет изменений чувствительного элемента. Им является проволока или пленка из металла с известной зависимостью уровня электрического сопротивления от количества тепла.
Согласно действующим стандартам для изготовления чувствительного элемента может использоваться никель, медь и платина. Последний материал наилучшим образом подходит для решения производственных задач. Так, платиновый термометр сопротивления (ТСП) проявляет высокие показания стабильности и надежности при температуре до 600 градусов Цельсия.
Почему термопреобразователи сопротивления (ТС) стоит покупать именно у нас
Рассматриваемые приборы заслужили высокую востребованность неслучайно. Их популярность объясняется тем, что термопреобразователь сопротивления (ТС) обладает отличной взаимозаменяемостью, а также высокой линейностью. Это значит, что при необходимости установки нового прибора, повторная калибровка оборудования не потребуется.
Обратившись к нашим специалистам, вы можете с легкостью купить комплект термопреобразователей, каждый из которых будет отвечать высоким требованиям качества, стабильности и надежности работы. НПП «Прома» обладает широкой географией поставок термопреобразователей и на протяжении последних 20 лет с успехом обслуживает ведущие отечественные заводы. Заказывая продукцию у нас, вы получите лучшее предложение по соотношению качества и стоимости. Мы уверены в надежности предлагаемых изделий, так как работаем с ними в собственном конструкторском бюро, а также производим их на новейшем технологичном оборудовании.
Разновидности датчиков температуры ТСМ
Компания выпускает модификации термопреобразователей с медным ЧЭ от ТСМ035 до ТСМ165. Изделия применяются для постоянного замера температуры:
- твердых;
- газообразных;
- жидких;
- агрессивных;
- неагрессивных сред.
Датчики имеют простую конструкцию, невысокую стоимость изготовления. При этом изделия качественные и надежные. Обладают приемлемой эксплуатационной долговечностью.
Основные техпараметры датчика температуры ТСМ
Термопреобразователи характеризуются следующими техническими параметрами:
- диапазон T°С, от -50°С до +180°С.
- класс допуска, A, B, C;
- показатель тепловой инерции, от 1 до 180;
- защитная арматура: латунь, сталь, медь М1.
Компания также выпускает датчики температуры ТСМУ имеющие унифицированный выходной сигнал. Цена на них выше, чем стандартных ТСМ.
Сферы применения
Одноканальные медные термопреобразователи используются для измерения температур в пищевой промышленности при производстве, стерилизации продукции. По взрывозащите такие датчики имеют обычное и специальное исполнение.
В системах вентиляции, электрощитовых, хранилищах, для контроля и регулировки температуры при технологических процессах используются ТСМ 302. Средний срок службы термопреобразователей сопротивления свыше 5 лет.
Также предлагаем Вам ознакомиться:
Компания НПП «Прома» является одним из ведущих производителей продукции для автоматизации промышленных производств в города России: Москва, Санкт-Петербург, Новосибирск, Екатеринбург, Нижний Новгород, Казань, Челябинск, Омск, Самара, Ростов-на-Дону, Уфа, Красноярск, Пермь, Воронеж, Волгоград, Краснодар, Рязань.
Типы чувствительных элементов в платиновых термопреобразователях
На сегодняшний день выделяют следующие разновидности чувствительных элементов:
1. В виде «свободной от напряжения спирали».
2. В виде «полой конструкции».
3. Устройство из пленки.
4. Устройство из платины со стеклянной оболочкой.
Самым распространенным и надежным видом является «свободная от напряжения спираль», чаще всего его можно встретить у российских производителей. Внешне этот элемент может выглядеть по-разному – в зависимости от использованных материалов и величины отдельных деталей.
«Полая конструкция» – тип устройства, внедренный сравнительно недавно. Чаще всего он востребован на промышленных предприятиях, связанных с особым производством (например, в атомной промышленности). Тип конструкции данного сенсора обуславливает его значительную точность, надежность и стабильность в эксплуатации. Повышенная себестоимость материалов сборки делает эту деталь весьма дорогостоящей.
К числу чувствительных элементов, широко применяемых за рубежом, относится пленочный тип, при котором на керамическую подложку нанесен тонкий платиновый слой. Данная разновидность имеет массу преимуществ: невысокую стоимость, практичность, небольшие габариты и малый вес. Минусом устройства называют низкую стабильность, однако в последнее время проводятся постоянные разработки и исследования, направленные на устранение этого недостатка.
Устройство, представляющее собой платиновую проволоку с покрытием из стекла, можно назвать одной из наиболее функциональных за счет полной герметизации и устойчивости к высокой влажности. Тем не менее, использовать этот прибор можно лишь при определенном температурном режиме. Стоимость этого типа элемента относится к сегменту выше среднего.
Термопара
Термопары обычно используются для измерения более высоких температур и более широких температурных диапазонов.
Чтобы резюмировать, как работают термопары: любой проводник, подвергнутый температурному градиенту, будет генерировать небольшое напряжение. Это явление известно как эффект Зеебека. Величина генерируемого напряжения зависит от типа металла. Практические применения эффекта Зеебека используют два разнородных металла, которые соединены на одном конце и разделены на другом. Температуру соединения можно определить по напряжению на разомкнутых концах проводов.
Существуют различные типы термопар. Определенные комбинации стали популярными, и выбор комбинации зависит от различных факторов, включающих в себя стоимость, доступность, химические свойства и стабильность. Для разных применений лучше всего подходят разные типы, и их обычно выбирают на основе требуемого диапазона температур и чувствительности.
Графики характеристик термопар смотрите на рисунке 5 ниже.
Рисунок 5 – Характеристики термопар
Порядок подключения
Схема подключения датчика температуры может существенно отличаться. Все зависит от того, какой разновидности отдано предпочтение. Прежде чем приступить к монтажу, надо определиться с требуемой точностью и назначением прибора. Если он будет использоваться для контроля температуры воздуха внутри помещения, потребуется одна схема. Если понадобиться измерить степень нагрева вещества, придется воспользоваться другой.
Как подключить кремниевый
Для подключения датчика температуры кремниевого типа может использоваться схема:
- 2-х проводная. Актуальна при отсутствии повышенных требований к высокой точности, так как в этом случае к измеренному сопротивлению добавляется сопротивление присоединенных проводов. Это существенно увеличивает величину дополнительной погрешности;
- 3-х проводная. Установка датчика температуры по данной схеме позволяет повысить точность. Такое подключение допускает измерение сопротивления проводов, а затем вычесть полученное значение из измеренного;
- 4-х проводная. По такой схеме устройство подключается таким образом, чтобы полностью исключить влияния подводящих проводов. Это позволяет избавиться от дополнительной ошибки и существенно повысить точность контроля.
Как подключить термопару
Для подключения холодных концов используются компенсационные провода либо монтаж производится напрямую к клеммам аналогового входа
При этом важно соблюдать полярность на входе в промышленный контроллер, используемый для программной компенсации температуры холодного спая и последующего расчета температуры в заданной точке
Внутреннюю компенсацию выполняют с использованием температуры модуля, используемого для подключения термопары. Для точной внешней компенсации температуру холодного спая контролируют дополнительным термометром сопротивления, подключаемым к специальному входу.
Как воспользоваться бесконтактным устройством
У датчиков температуры бесконтактного типа есть особенность определения степени нагрева устройства. Непосредственное подключение в этом случае не требуется. Устройство приближается к контролируемому объекту и обеспечивается его совмещение с соответствующим датчиком. Это оказывает существенно влияние на конечный результат, который во многом зависит от опыта и знаний специалиста, производящего измерения. Если поменяем бесконтактное устройство на контактную модель, точность увеличится.
На схеме, приводимой в инструкции к конкретному устройству, указан порядок подключения и последующей эксплуатации датчика температуры. Прежде чем приступить к монтажным работам, стоит с ней тщательно ознакомиться, чтобы избежать типовых ошибок, допускаемых неопытными пользователями при самостоятельном выполнении монтажных работ.
Металлический термометр сопротивления
Представляет собой резистор, изготовленный из металлической проволоки или металлической плёнки на диэлектрической подложке и имеющий известную зависимость электрического сопротивления от температуры.
Советуем изучить Mimo антенна 4g lte своими руками
Наиболее точный и распространённый тип термометров сопротивления — платиновые термометры. Это обусловлено тем, что платина имеет стабильную и хорошо изученную зависимость сопротивления от температуры и не окисляется в воздушной среде, что обеспечивает их высокую точность и воспроизводимость. Эталонные термометры изготавливаются из платины высокой чистоты с температурным коэффициентом 0,003925 1/К при 0 °C.
В качестве рабочих средств измерений применяются также медные и никелевые термометры сопротивления. Технические требования к рабочим термометрам сопротивления изложены в стандарте ГОСТ 6651-2009 (Государственная система обеспечения единства измерений. Термопреобразователи сопротивления из платины, меди и никеля. Общие технические требования и методы испытаний). В стандарте приведены диапазоны, классы допуска, таблицы номинальных статических характеристик (НСХ) и стандартные зависимости сопротивление-температура. ГОСТ 6651-2009 соответствует международному стандарту МЭК 60751 (2008). В этих стандартах, в отличие от ранее действующих стандартов не нормированы номинальные сопротивления при нормальных условиях. Начальное сопротивление изготовленного термосопротивления может быть произвольным с некоторым допуском.
Промышленные платиновые термометры сопротивления в большинстве случаев считаются имеющими стандартную зависимость сопротивление-температура (НСХ), что обеспечивает погрешность не более 0,1 °C (класс термосопротивлений АА при 0 °C).
Термометры сопротивления изготовленные в виде напыленной на подложку металлической плёнки отличаются повышенной вибропрочностью, но меньшим диапазоном рабочих температур. Максимальный диапазон, в котором установлены классы допуска платиновых термометров для проволочных чувствительных элементов, составляет 660 °C (класс С), для плёночных — 600 °C (класс С).
Часто задаваемые вопросы
Результат моих измерений – x МОм. Это нормально?
Какое должно быть сопротивление изоляции — на этот вопрос нет единого ответа. Точный ответ на него могут дать производитель оборудования или соответствующие стандарты. Для низковольтных установок минимальным значением можно считать значение 1 МОм. Для установок или оборудования с более высоким рабочим напряжением можно использовать правило, определяющее минимальное значение 1 МОм на кВ, в то время как рекомендации IEEE, касающиеся вращающихся машин, определяют минимальное сопротивление изоляции (n + 1) МОм, где n – рабочее напряжение в кВ.
При измерении высоких значений сопротивления изоляции в дополнение к указанным выше правилам безопасности необходимо соблюдать следующие меры предосторожности
- Используйте специальное гнездо G (Guard) (описывается в специальном разделе выше).
- Используйте чистые, сухие провода.
- Прокладывайте провода на расстоянии друг от друга и без контакта с любыми объектами или с полом. Это позволит ограничить возможность возникновения токов утечки в самой измерительной линии.
- Не касайтесь проводов и не перемещайте их во время измерения, чтобы избежать возникновения вызывающих помехи емкостных эффектов.
- Для стабилизации измерения выждите необходимое время.
Почему два последовательных измерения не всегда дают одинаковый результат?
Применение высокого напряжения создает электрическое поле, которое поляризует изоляционные материалы
Важно понимать, что для возвращения изоляционных материалов после завершения тестирования в состояние, в котором они находились до испытания, потребуется значительное время. В некоторых случаях на это может потребоваться больше времени, чем указанное выше время разрядки
Как протестировать изоляцию, если я не могу отключить установку?
Если невозможно отключить питание тестируемой установки или оборудования, мегомметр использовать нельзя. В некоторых случаях можно провести тестирование без снятия напряжения, используя для измерения тока утечки специальные клещи, но этот метод гораздо менее точен.
Преимущества и недостатки термометров сопротивления
Как и любой прибор, использование термометров сопротивления имеет ряд преимуществ и недостатков. Рассмотрим их.
Преимущества:
- практически линейная характеристика;
- измерения достаточно точны (погрешность не более 1°С);
- некоторые модели дешёвые и просты в использовании;
- взаимозаменяемость приборов;
- стабильность работы.
Недостатки:
- малый диапазон измерений;
- довольно низкая предельная температура измерений;
- необходимость использования специальных схем подключения для повышенной точности, что увеличивает стоимость внедрения.
Термометр сопротивления — распространенное устройство практически во всех отраслях промышленности. Этим прибором удобно измерять невысокие температуры, не опасаясь за точность полученных данных. Термометр не отличается особой долговечностью, однако, приемлемая цена и простота замены датчика перекрывают этот небольшой недостаток.
Определение номинального значения сопротивления резистора по маркировке цветовыми полосами: онлайн калькулятор
Для чего нужен пирометр и как измерять температуру бесконтактным методом
Что такое термистор, их разновидности, принцип работы и способы проверки на работоспособность
Что такое термопара, принцип действия, основные виды и типы
Что такое тензодатчик, типы тензометрических датчиков, схема подключения и их применение
Что такое петля фаза-ноль простым языком — методика проведения измерения