Что такое частотный преобразователь, основные виды и какой принцип работы

Правила подключения и настройки

Для полноценной и эффективной работы инвертора асинхронного электродвигателя его необходимо правильно подключить и настроить. В схему перед частотником устанавливается нужный автоматический выключатель. Если это трехфазная сеть, то выключатель должен быть рассчитан на напряжение 380 В, а сила тока соответствовать номиналу двигателя.

В случае аварийной ситуации в сети на одной фазе, отключены будут и остальные токоведущие проводники. Величина тока разрыва должна соответствовать значению в отдельной фазе электродвигателя. При использовании преобразователя частоты в однофазной сети устанавливается одиночный автоматический выключатель, по номиналу превышающий в три раза значение тока.

В обоих случаях автоматические выключатели не рекомендуется устанавливать в разрыв заземляющего или нулевого проводника, необходимо осуществлять только прямое подключение.

Статорные обмотки механизма соединяются «звездой» или «треугольником», в зависимости от того, какое напряжение поступает от инвертора. Если оно совпадает с наименьшим значением на корпусе электродвигателя, то применяется схема «треугольник». При совпадении высокого значения напряжения соединение проводится по схеме «звезда».

Далее, инвертор подключается к контроллеру и блоку управления, который обычно поставляется в комплекте с преобразователем. Все подключения проводятся по схеме, входящей в руководство по эксплуатации оборудования. После выполнения крепежных работ включается автомат и на инвертор подается питание, о чем будет сигнализировать лампочка на пульте.

Для начала работы частотника включается кнопка запуска и осуществляется поворот соответствующей рукоятки. Электродвигатель медленно начнет вращаться. Если необходимо поменять вращение в обратную сторону, то для этого на пульте находится соответствующий тумблер. Чтобы добиться необходимого количества оборотов двигателя, устанавливается необходимая частота напряжения или вращения, в зависимости от модели оборудования.

Прямой пуск, устройства плавного пуска или частотные преобразователи

Электромагнитный пускатель

Есть несколько способов запустить и управлять электродвигателем. В основном запуск двигателя происходит прямым пуском через электромагнитный пускатель. При таком подходе на двигатель подается полное напряжение, и он максимально быстро развивает номинальную скорость.

Проблема с которой сталкиваются операторы при прямом пуске заключается в том, что импульс пускового тока может в 7 раз превышать ток полной нагрузки двигателя. В течение очень короткого периода времени на двигатель и его элементы подается очень сильный импульс тока. Если мощный двигатель будет часто запускаться и останавливаться, то он быстрее износится и выйдет из строя, а также может вывести из строя исполнительный механизм работающий от него.

Устройство плавного пуска

Напротив, устройство плавного пуска сокращает пусковые токи до 2-4 крат, уменьшая нагрузку и крутящий момент, прилагаемый к двигателю. Такой подход позволяет двигателю разгоняться со скоростью, которая определяется настройкой самого устройства плавного пуска. Оператор может установить конкретное время разгона, и с момента запуска до назначенного времени двигатель будет плавно разгоняться. Такой подход позволяет снизить пусковой ток, снизить риск преждевременного выхода из строя оборудования и сэкономить немного электроэнергии. Устройства плавного пуска идеально подходят в тех случаях, где линейное изменение скорости и управление крутящим моментом являются критически важными компонентами, а также в системах трубопроводов, чтобы избежать гидроударов при пуске и останове насосов.

Частотный преобразователь

ЧРП продвигает эту концепцию на шаг вперед, позволяя оператору всегда контролировать пусковой ток и скорость вращения электродвигателя. ЧРП может управлять двигателем как во время цикла пуска/останова, так и в течение всего времени его работы. ЧРП необходим там, где требуется полный контроль скорости, а основной проблемой является повышенное потребление энергии.

По первоначальным вложениям средств устройство плавного пуска является менее дорогим вариантом, но экономический эффект от внедрения преобразователя частоты может в разы окупить его стоимость.

Как осуществляется подключение преобразователя частоты?

Если рассмотреть монтаж преобразователя частоты схематически, то вес процесс сводиться к соединению контактов самого устройства, электродвигателя и управляющего блока-предохранителя. Достаточно соединить провода всех элементом, подключить двигатель к сети и запустить его.

На первый взгляд, ничего сложного в этом нет, но, на самом деле, процедура монтажа имеет некоторые свои нюансы:

Очень важно, чтобы в цепи между самим частотником и источником питания был установлен предохранитель. Он позволит своевременно отключать устройства в случае перепадов напряжения, сохраняя их работоспособность

Примечательно, что при подключении к трехфазной сети, необходимо, чтобы сам предохранитель также был трехфазным, но имел общий рычаг для отключения. Это даст возможность отключать питание сразу на всех фазах даже, если только на одной случилось короткое замыкание или перегрузка. Если преобразователь подключается к однофазной сети, то и предохранитель должен быть однофазным. В данном случае при расчетах необходимо учитывать ток только одной фазы, но умноженный на 3. Всегда стоит помнить, что в инструкции практически к любому преобразователю указаны требования и нормы по его установке. С ними необходимо ознакомиться еще до начала работ.
Фазовые выходы частотного преобразователя подключаются к контактам самого электродвигателя. При этом в зависимости от напряжения частотника обмотки двигателя могут иметь формацию «звезда» или «треугольник».  Обычно на корпусе двигателя указано два значения напряжения. Если частотник соответствует меньшему, то обмотки соединяются «звездой», если большему – «треугольником». Вся эта информация обычно пропечатывается в инструкции.
В комплекте практически с каждым преобразователем частоты прилагается выносной пульт управления. Он не является обязательным элементов цепи, ведь на самом устройстве также есть свои элементы управления, но позволяют существенно упростить работу с оборудованием. Пульт можно монтировать на любом расстоянии от частотника. Обычно делается это следующим образом: преобразователи частоты, которые имеют низкую степень защиты располагаются подальше от двигателя, а сам пульт выносится непосредственно к рабочему месту около оборудования.

Не менее важным этапом установки частотного преобразователя является его тестовый запуск. Он осуществляет по следующей схеме:

  • После подключения всех элементов системы (предохранитель, панель управления, частотник, двигатель) необходимо перевести рукоять на пульте управления в активное положение на несколько градусов.
  • Тумблеры предохранителя переключить в положение «ВКЛ». После этого на частотном преобразователи должны загореться световые индикаторы, которые будут сигнализировать, что оборудование подключено правильно, а двигатель должен начать медленно вращаться.
  • Если вал двигателя начал вращаться в другу от нужной сторону, необходимо перепрограммировать сам частотный преобразователь на реверсное движение. Практически все современные устройства поддерживают такую функцию.
  • Постепенно передвигайте рукоять управления и следите за работой двигателя – частота вращения вала должна расти по мере того, как вы передвигаете рукоять.

Если при тестовом запуске никаких проблем обнаружено не было, значит, вы сделали все правильно и система может включаться в рабочий процесс.

Как проверить частотный преобразователь

Проверять работу частотника следует после его покупки, причем сделать это можно только после сборки системы и его настройки. В сложных промышленных системах проверяется минимальная и максимальная заявленная частота вращения, измеряется вращающий момент двигателя на разной частоте, оцениваются температура оборудования и точность индикации параметров работы.

Ответ на вопрос, как проверить частотник в маломощных системах бытового назначения, значительно проще. Проверяются пределы регулировки частоты, функция реверса, работа датчика обратной связи, если он подключен. Большинство частотных преобразователей имеют встроенную систему самодиагностики и контроля режимов работы, поэтому в случае отклонения питающего напряжения, короткого замыкания, заклинивания двигателя и других нештатных ситуаций на табло оборудования выводится соответствующий код ошибки. 

Выпускаемые модели

Во многих областях применяются асинхронные двигатели, работа которых характеризуется высокими показателями устойчивости и безопасности

Это особенно важно, так как любое устройство обладает своими индивидуальными характеристиками, зачем и нужны инверторы, которые обеспечивают оптимизацию параметров их питания. К новой линейке оборудования относятся:

  1. Emotron FDU 2.0 — преобразователь частоты последнего поколения, выпускаемый шведской компанией Emotron. Устройство работает в диапазоне от 0,75 до 1,6 кВт и рассчитано на разные группы напряжения: 3×380 B, 3×500 B, 3×690 B. В основном инвертор используется для насосного или вентиляционного оборудования.
  2. Emotron серии CDU/CDX — оборудование, предназначенное для контроля за работой лифта. Инверторы этой марки устанавливаются как на новые лифты, так и для модернизации старых конструкций. Монтируются в машинном отделении или непосредственно рядом с шахтой.
  3. «Лидер» — преобразователь частоты применяется для управления асинхронными двигателями в насосном, вентиляционном оборудовании, мельницах, дробилках, центрифугах и так далее. Устройство исключает присутствие динамических ударов во время запуска, что позволяет в 1,5—2 раза увеличить срок службы двигателя и приводного механизма.
  4. Easydrive серии Smart — инвертор, обладающий выходной мощностью от 1 Гц до 2 кГц. Отличается автоматическим определением параметров электродвигателя, когда механизм неподвижен. Устройство обладает семью программируемыми входами переключения, которые позволяют выполнять до 30 функций.

Что такое частотный преобразователь

Основной функцией частотных преобразователей является плавная регулировка скорости вращения асинхронных двигателей. С этой целью на выходе устройства создается трехфазное напряжение с переменной частотой.

Преобразователи частоты нередко называются инверторами. Их основной принцип действия заключается в выпрямлении переменного напряжения промышленной сети. Для этого применяются выпрямительные диоды, объединенные в общий блок. Фильтрация тока осуществляется конденсаторами с высокой емкостью, которые снижают до минимума пульсации поступающего напряжения. В этом и заключается ответ на вопрос для чего нужен частотный преобразователь.

В некоторых случаях в схему может быть включена так называемая цепь слива энергии, состоящая из транзистора и резистора с большой мощностью рассеивания. Данная схема применяется в режиме торможения, чтобы погасить напряжение, генерируемое электродвигателем. Таким образом, предотвращается перезарядка конденсаторов и преждевременный выход их из строя. В результате использования частотников, асинхронные двигатели успешно заменяют электроприводы постоянного тока, имеющие серьезные недостатки. Несмотря на простоту регулировки, они считаются ненадежными и дорогими в эксплуатации. В процессе работы постоянно искрят щетки, а электроэрозия приводит к износу коллектора. Двигатели постоянного тока совершенно не подходят для взрывоопасной и запыленной среды.

В отличие от них, асинхронные двигатели значительно проще по своему устройству и надежнее, благодаря отсутствию подвижных контактов. Они более компактные и дешевые в эксплуатации. К основному недостатку можно отнести сложную регулировку скорости вращения традиционными способами. Для этого было необходимо изменять питающее напряжение и вводить дополнительные сопротивления в цепь обмоток. Кроме того, применялись и другие способы, которые на практике оказывались неэкономичными и не обеспечивали качественной регулировки скорости. Но, после того как появился преобразователь частоты для асинхронного двигателя, позволяющий плавно регулировать скорость в широком диапазоне, все проблемы разрешились.

Одновременно с частотой изменяется и подводимое напряжение, что позволяет увеличить КПД и коэффициент мощности электродвигателя. Все это позволяет получить высокие энергетические показатели асинхронных двигателей, продлить срок их эксплуатации.

Частотный преобразователь

По способу подключения питания на входные клеммы различают однофазные и трехфазные частотники. При этом однофазные частотные преобразователи питаются фазным напряжением 220 В, трехфазные – линейным 380 В. Однако на выходе ПЧ обычно вырабатывается трехфазное напряжение со сдвигом фаз 120°, величина которого ограничена напряжением питания на входе.

Однофазный и трехфазный преобразователи SIEMENS Micromaster 420

В контексте однофазных двигателей преобразователи частоты можно условно разделить на три группы:

  1. Преобразователи, специально предназначенные для однофазных двигателей.
  2. Преобразователи с опциональной возможностью подключения однофазных двигателей, при этом необходимо использовать соответствующие настройки и схему подключения.
  3. Преобразователи без возможности подключения однофазного двигателя.

Мы рассмотрим частотники из второй группы.

Обратите внимание! Не стоит путать преобразователи с однофазным питанием по входу с частотниками, имеющими однофазный выход. Возможны комбинации, когда преобразователь с однофазным питанием имеет на выходе 3 фазы с напряжением 220 В, либо когда ПЧ с трехфазным питанием выдает на однофазный двигатель напряжение 220 или 380 В

Как выбрать частотный преобразователь?

Следует выделить несколько основных параметров, на которые нужно обращать внимание  при выборе частотного преобразователя:

Мощность. Данный параметр частотного преобразователя должен соответствовать мощности двигателя, с которым он будет использоваться. Следует выбирать устройство, мощность которого будет соответствовать номинальному току. Покупать частотный преобразователь с очень завышенными характеристиками попросту бессмысленно, ведь он обойдется намного дороже, да и с наладкой могут возникнуть проблемы.
Тип нагрузки. Тут все зависит от того, как осуществляется работа агрегата, к которому будет подключен частотный преобразователь. Например, при вентиляторных нагрузках не бывает перегрузок, а в случае с работой пресса – ток может превышать номинальные значения  на 60 и более процентов. Соответственно, необходимо учитывать это при выборе и оставлять определенный запас «хода».
Тип охлаждения двигателя. Двигатели могут оснащаться принудительными системами охлаждения либо иметь самообдув. Во втором случае к крыльчатке ротора прикрепляются специальные лопасти, которые вращаются вместе с ним и обдувают двигатель. Соответственно, нормальная степень обдува в данном случае напрямую зависит от частоты вращения. Если двигатель продолжительное время будет работать на пониженной частоте, то это может привести к перегреву. Соответственно, лучше позаботиться о дополнительном охлаждении, если изменение частоты будет больше 10% от номинального значения.
Входное напряжение. Данный показатель определяет, при каком напряжении способен работать преобразователь частот. Тут мало знать, что в сети напряжение обычно составляет около 380 В. Часто происходят скачки в диапазоне +-30%. Кроме того, в сетях, куда подключено большое количество силового оборудования, часто случаются выбросы в 1 кВ. Соответственно, чем шире диапазон рабочих напряжений у преобразователя частот, тем надежнее он будет работать.
Способ торможения. Остановка двигателя может осуществляться либо инверторным мостом, либо электродинамическим способом. Первый метод больше подходит для точного и быстрого торможения, а второй – в механизмах с частым торможением либо при необходимости постепенной остановки

На это обязательно следует обратить внимание.
Окружающая среда и защита. Обычно в паспорте преобразователя частоты указаны условия, при которых должно использоваться устройство

Например, влагозащищенные модели соответствуют стандарту IP 54 – они устойчивы к воздействию влаги и могут использоваться в помещениях с паровыми испарениями и повышенной влажностью.
Тип управления и интерфейсы. Обязательно необходимо обратить внимание на наличие подходящих для подключения разъемов, а также возможностей правления – некоторые модели предназначены для монтажа на месте, а другие – в отдельной рубке управления.

Если вы никогда не работали с преобразователями частоты, лучше обратиться за консультацией к специалисту.

Низковольтный ПЧ на IGB транзисторах. Устройство, особенности

Рисунок 3 показывает блочную схему и функции основных узлов. После каждого из них, отображены линии выходных параметров электроэнергии. Подаваемая энергия (Uвх.), в форме синусоиды, неизменной амплитуды, частоты. Дальше — узел постоянного тока, состоящий из неуправляемого или регулируемого выпрямителя 1. Емкостного фильтра 2, с функциями сглаживания пульсации (U выпр.). Потом, сигнал Ud поступает на независимый, автономный инвертор 3, работающий с нагрузкой, которая потребляет ту же частоту.

Он преобразует одно или 3-фазный ток постоянной величины в переменный, имеет приемлемый уровень гармоник, добавленных к выходному напряжению. Собранный на полностью регулируемых полупроводниковых приборах IGBT. Сигналы СУ подсоединяют обмотку электродвигателя к соответствующим полюсам, используя силовые транзисторы. Подключение происходит в период импульсов, моделируемых по синусоиде амплитудой и частотой. Управляемые выпрямители (1) регулируют величину Ud. Функцию сглаживания выполняет электрофильтр (4).

Каков принцип частотных методов регулирования? Наглядное объяснение можно вывести из следующей формулы

Высокие показатели КПД, коэффициента мощности, перегрузочной способности достигаются при одновременном изменении частоты и напряжения. Законы изменения этих параметров напрямую зависят от момента нагрузки, который может иметь статичный, вентиляторный и обратно пропорциональный скорости вращения характер.

При постоянном моменте нагрузке напряжение на статоре будет регулироваться в пропорциональной зависимости от частоты, что хорошо видно из формулы:

Если момент нагрузки имеет вентиляторный характер, то напряжение будет пропорционально квадрату частоты питающего напряжения.

Ну и моменте нагрузки, который обратно пропорционален скорости получим:

Как видно из вышеописанного при обеспечении одновременного регулирования частоты питающего напряжения и параметров напряжения на статоре частотным преобразователем достигается плавное бесступенчатое регулирование скорости вращения вала двигателя. При этом отсутствие передач позволяет более точно регулировать скорость вращения по заданным пользователем параметрам.

Основные достоинства применения регулируемых приводов на предприятиях.

Разница в производительности и эффективности между дросселированием посредством механических средств и применением частотных преобразователей очевидна на следующем рисунке. (схема 1) Из схемы становится ясно, что возрастает экономия ресурсов, а также нивелируются проблемы, связанные с полной потерей динамической мощности потока во время закрытия заслонок, что приводит, по сути, к холостой работе двигателя. Это увеличивает экономическую эффективность частотных преобразователей.

Конструкция типового частотного преобразователя.

Принципиальной задачей преобразователя частоты является изменение параметров электрического тока, это осуществляется при помощи транзисторного выпрямления тока и преобразования его до необходимых заданных значений. Типовой частотный преобразователь состоит из трех частей:

— Звено постоянного тока. Состоит из выпрямителя и фильтрационных устройств. Звено постоянного тока принимает входной сигнал и перенаправляет его в инвертор.

— Импульсного инвертора. Силовой трехфазный инвертор обычно имеет шесть транзисторов-ключей и осуществляет преобразование тока до заданных частот и амплитуд, а затем подает его на статор. Инвертор может состоять из тиристорной схемы.

— Микропроцессорной системы управления. Управляет системами преобразования и защиты преобразователя.

Четкая синусоида выходного сигнала – результат работы IGBT-транзисторов в качестве ключей инвертора, которые работают с более высокой частотой переключения, чем устаревшие тиристоры.

Как работает частотный преобразователь?

Схема преобразователя представлена в наглядном виде на следующем рисунке. (схема 2)

Алгоритм переключения вентилей задается микропроцессором, переключение преобразует постоянное Uвх. в переменное выходное напряжение с прямоугольными импульсами. Активная составляющая токового потока асинхронного двигателя проходит через транзисторы, а реактивная – через диоды обратного тока.

И – трехфазный мостовой инвертор; В – трехфазный мостовой выпрямитель;

Подключение и настройка преобразователя частоты

Подключение частотных преобразователей особенно актуально для частных владельцев оборудования с асинхронными двигателями. Предварительно рекомендуется установить автоматический выключатель, который обесточит сеть при возможном коротком замыкании в одной из фаз.

В схемах частотники для асинхронных двигателей подключаются к электродвигателям двумя способами – «треугольником» и «звездой». Первая схема применяется для однофазных регулируемых приводов, без потери мощности. Такие частотники обладают максимальной мощностью 3 кВт и предназначены в основном для эксплуатации в бытовых условиях. Схема «звезда» используется там, где имеются трехфазные промышленные сети.

С целью ограничения пускового тока и уменьшения пускового момента, запуск двигателей, мощностью свыше 5 кВт осуществляется по смешанной схеме «звезда-треугольник». «Звезда» используется в момент запуска, когда напряжение подается на статор. После того как двигатель достигнет номинальной скорости, подача питания переключается на другую схему – «треугольник». Данный способ применяется не везде, а только там, где имеется возможность подключения сразу обеих схем.

Подключение пульта осуществляется в соответствии со схемой, прилагаемой к частотному преобразователю. Перед началом монтажа и до подачи питания управляющий рычаг должен находиться в положении ВЫКЛЮЧЕНО. Когда рычаг переводится в положение ВКЛЮЧЕНО, это действие подтверждается световым индикатором. Во многих моделях запуск по умолчанию осуществляется путем нажатия на кнопку RUN. Постепенное наращивание оборотов электродвигателя производится медленным поворотом рукоятки пульта. По достижении необходимой скорости, рукоятка фиксируется в этом положении. Для переключения режима на обратное вращение существует кнопка реверса.

Векторное управление без обратной связи

Векторное управление (ВУ) без обратной связи используется для более широкого и динамичного регулирования скорости электрической машины. При пуске от преобразователя частоты электродвигатели могут развивать пусковой момент в 200% от номинального при частоте всего 0,3 Гц. Это значительно расширяет перечень механизмов, где может быть применен асинхронный электропривод с векторным управлением. Этот метод также позволяет управлять моментом машины во всех четырех квадрантах.

Ограничение вращающего момента осуществляется двигателем. Это необходимо для предотвращения повреждения оборудования, машин или продукции. Значение моментов разбивают на четыре различных квадранта, в зависимости направления вращения электрической машины (вперед или назад) и в зависимости от того, реализует ли электродвигатель режим рекуперативного торможения. Ограничения могут устанавливаться для каждого квадранта отдельно или же пользователь может задать общий вращающий момент в преобразователе частоты.

Двигательный режим асинхронной машины будет при условии, что магнитное поле ротора отстает от магнитного поля статора. Если магнитное поле ротора начнет опережать магнитное поле статора, то тогда машина войдет в режим рекуперативного торможения с отдачей энергии, проще говоря – асинхронный двигатель перейдет в генераторный режим.

Например, машина по закупорке бутылок может использовать ограничение момента в квадранте 1 (направление вперед с положительным моментом) для предотвращения чрезмерного затягивания крышки бутылки. Механизм производит движение вперед и использует положительный момент для того, чтобы закрутить крышку бутылки. А вот устройство, такое как лифт, с противовесом тяжелее, чем пустая кабина, будет использовать квадрант 2 (обратное вращение и положительный момент). Если кабина подымается на верхний этаж, то крутящий момент будет противоположен скорости. Это необходимо для ограничения скорости подъема и недопущения свободного падения противовеса, так как он тяжелее, чем кабина.

Обратная связь по току в данных преобразователях частоты ПЧ позволяет устанавливать ограничения по моменту и току электродвигателя, поскольку при увеличении тока растет и момент. Выходное напряжение ПЧ может изменятся в сторону увеличения, если механизм требует приложения большего крутящего момента, или уменьшатся, если достигнуто его предельно допустимое значение. Это делает принцип векторного управления асинхронной машиной более гибким и динамичным по сравнению с принципом U/F.

Также частотные преобразователи с векторным управлением и разомкнутым контуром имеют более быстрый отклик по скорости – 10 Гц, что делает возможным его применение в механизмах с ударными нагрузками. Например, в дробилках горной породы нагрузка постоянно меняется и зависит от объема и габаритов обрабатываемой породы.

В отличии от шаблона управления U/F векторное управление использует векторный алгоритм, для определения максимально эффективного напряжения работы электродвигателя.

Векторное управления ВУ решает данную задачу благодаря наличию обратной связи по току двигателя. Как правило, обратная связь по току формируется внутренними трансформаторами тока самого преобразователя частоты ПЧ. Благодаря полученному значению тока преобразователь частоты проводит вычисления вращающего момента и потока электрической машины. Базовый вектор тока двигателя математически расщепляется на вектор тока намагничивания (Id) и крутящего момента (Iq).

Используя данные и параметры электрической машины ПЧ вычисляет векторы тока намагничивания (Id) и крутящего момента (Iq). Для достижения максимальной производительности, преобразователь частоты должен держать Id и Iq разведенными на угол 90. Это существенно, так как sin 90 = 1, а значение 1 представляет собой максимальное значение крутящего момента.

В целом векторное управление асинхронным электродвигателем осуществляет более жесткий контроль. Регулирование скорости составляет примерно ±0,2% от максимальной частоты, а диапазон регулирования достигает 1:200, что позволяет сохранять вращающий момент при работе на низких скоростях.

Для чего нужен частотный преобразователь

Последнее время на производствах наблюдается тенденция, заключающаяся в переходе с синхронных электродвигателей или двигателей с фазным ротором на асинхронные. Этот сдвиг можно объяснить различными причинами и большинство из них связано с экономией. Асинхронные двигатели более компактны и требуют меньшего обслуживания, нежели двигатели с фазным ротором или синхронные электродвигатели с щетками. Да и в целом если сравнить цену асинхронного и синхронного двигателя одинаковой мощности и напряжения, то станет очевидным почему все больше руководителей предприятий стремятся к этому переходу.

Но одним из недостатков асинхронных двигателей является меньшая точность позиционирования вала и соответственно менее точное управление скоростью его вращения. Так же оператору необходимо иметь возможность оптимизировать режим работы электродвигателя так, чтобы не было ненужной, потраченной впустую энергии

Для этого важно понимать возможности практического применения частотно-регулируемого привода (ЧРП)

Среди вопросов, которые нужно изучить:

  • Когда выгоден ЧРП?
  • При каких условиях следует использовать ЧРП?
  • В чем разница между частотным преобразователем и устройством плавного пуска?

Ответы на эти вопросы позволят понять и максимально использовать возможности преобразователя частоты и минимизировать затраты на эксплуатацию двигателя переменного тока в условиях производства.

Как подключить частотный преобразователь

Для подключения частотного преобразователя к оборудованию, прежде всего необходимо убедиться в том, что характеристики такого прибора подходят для работы с конкретным электродвигателем

Также важно, чтобы напряжение питающей сети позволяло использовать данный частотный преобразователь

При установке и подключении ЧП необходимо, чтобы условия эксплуатации соответствовали классу защищённости от влаги и пыли, а также были выдержаны все расстояния от движущихся частей машин и механизмов, от людских проходов и электрооборудования и аппаратуры.

Схема подключения ПЧ

Частотные преобразователи бывают как для трехфазных сетей, так и для однофазных. При этом к однофазной сети также можно подключать и трехфазный частотный преобразователь по схеме «треугольник», который дополнительно оснащен специальным конденсаторным блоком (при этом значительно падает мощность и понижается КПД устройства). Подключение же трехфазного преобразователя в соответствующей сети производится по схеме «звезда».

Управление частотным преобразователем может осуществляться с использованием контакторов, встроенных в различные релейные схемы, микропроцессорных контроллеров и компьютерного оборудования, а также вручную. Поэтому при подключении автоматизированных систем требуется участие специалистов по наладке такого оборудования.

Принцип подключения частотных преобразователей в целом одинаковый, но может несколько отличаться для разных моделей. Поэтому правильным решением будет перед подключением изучить инструкцию, сопоставить характеристики устройств и убедиться в том, что устройство подключается по схеме, предложенной производителем.

Для трехфазного электродвигателя

Для трехфазного электродвигателя принцип подключения следующий: к клеммным колодкам на выходе трехфазного частотного преобразователя подключаются фазные проводники к каждому выводу, а на вход подключаются фазы питающего напряжения. В данном случае всегда реализуется схема подключения «звезда» в двигателе. При подключении трехфазного двигателя через частотный преобразователь к однофазной сети применяют схему «треугольник».

Для однофазного электродвигателя

Для однофазного электродвигателя необходимо подключить фазный и нулевой проводник к преобразователю частоты, а обмотки двигателя подключаются к соответствующим клеммам на выходе частотного преобразователя. Например, обмотка L1 будет подключаться к клемме А преобразователя, обмотка L2 к клемме B, а общий провод к клемме C. Если применяется конденсаторный двигатель, то от частотного преобразователя фаза подключается к двигателю, а конденсатор обеспечивает сдвиг фаз.

Во всех случаях, при подключении частотных преобразователей и электродвигателей, всегда следует применять устройства защиты: автоматические выключатели и УЗО, рассчитанные на высокие пусковые токи, а также обязательно подключать заземляющий проводник к корпусам устройств

Также важно обратить внимание на сечение проводников электрокабеля, которым будет производится подключение – сечение должно соответствовать параметрам подключаемого частотного преобразователя и нагрузки

Смотрите это видео на YouTube

Что такое частотный преобразователь, основные виды и какой принцип работы

Как подключить 3 фазный электродвигатель к сети 220 вольт через конденсатор

В чём отличия схем подключения обмоток электродвигателя звездой и треугольником

Схема работы устройства плавного пуска, его назначение и конструкция

Устройство, виды и принцип действия асинхронных электродвигателей

Как подключить однофазный электродвигатель — схема с конденсатором

Конструкция и принцип работы преобразователей частоты

Если рассматривать общую конструкцию преобразователей частоты, то в ней стоит выделить два основных блока компонентов:

  • Управления.
  • Электропреобразований.

Первый блок обычно представлен микропроцессором, который воспринимает команды от внешних систем управления и интерфейсов и передает непосредственно на электропреобразовательные элементы.

Блок электропреобразований является основным рабочим механизмом всей системы. Именно он отвечает за прием входного тока и преобразование его параметров до нужных значений, установленных оператором через управляющий блок. В состав данного блока входят следующие элементы:

  • Выпрямитель.
  • Промежуточная цепь.
  • Инвертор.

Поговорим о каждом более подробно.

Особенности эксплуатации двигателей с частотными преобразователями

Как уже сказано выше, используя частотный преобразователь для электродвигателя, снижаем потери мощности за счет снижения реактивной составляющей тока. Кроме того, есть некоторые моменты, которые необходимо знать:

  • При работе на сниженных оборотах возможен перегрев двигателя. Это происходит за счет снижения скорости естественного обдува. Особенно заметен перегрев на скоростях, близких к номинальным. Для снижения температуры в таком случае желательно использовать дополнительный обдув.
  • При работе стандартного электромотора (на 50 Гц) на повышенных скоростях вращения, стоит учитывать состояние подшипников. Из-за возникающей более сильной вибрации они быстрее выходят из строя. Для нивелирования этого явления можно использовать виброгасящие подкладки. Кроме того, частоту надо выбирать так, чтобы не возникало резонанса. И учтите: на повышенных скоростях шуметь вентилятор электромотора будет больше.

    Надо учитывать особенности работы

  • При снижении частоты вращения вала, для нормальной работы необходимо пропорционально снижать нагрузку. Асинхронный двигатель обеспечивает максимальный крутящий момент только на номинальной частоте вращения. Поэтому с уменьшением частоты, он падает.
  • Для длительной работы на сниженных оборотах используют электродвигатели со сниженной номинальной частотой — от 750 об/мин до 1500 об/мин. Второй вариант — двигатели с завышенной мощностью.
  • Если частотный преобразователь выбираете для погружного насоса, необходимо выбор делать не только по мощности, но и по току. У двигателей для этой категории насосов номинальный ток значительно выше. При большой длине кабеля от ПЧ до насоса, напряжение может значительно понижаться, что ведет к снижению скорости вращения вала электродвигателя. Чтобы падение было менее значительным, используют кабель с завышенным сечением проводников.

Частотный преобразователь для электродвигателя расширяет возможности его использования

Это важно, но не менее важно правильно его подобрать, учитывая все особенности работы. Это гарантирует длительную эксплуатацию обоих устройств

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий