Что такое поляризация света и ее практическое применение

Поляризация света для

В нашем блоге уже можно найти статьи про преломление, дисперсию и дифракцию света. Теперь пришло время поговорить о том, в чем заключается сущность поляризации света.

В самом общем смысле правильнее говорить о поляризации волн. Поляризация света, как явление, представляет собой частный случай поляризации волны. Ведь свет представляет собой электромагнитное излучение в диапазоне, воспринимаемом глазами человека.

Что такое поляризация света

Поляризация – это характеристика поперечных волн. Она описывает положение вектора колеблющейся величины в плоскости, перпендикулярной направлению распространения волны.

Если этой темы не было на лекциях в университете, то вы, вероятно, спросите: что это за колеблющаяся величина и какому направлению она перпендикулярна?

Как выглядит распространение света, если посмотреть на этот вопрос с точки зрения физики? Как, где и что колеблется, и куда при этом летит?

Электромагнитная волна

Свет – это электромагнитная волна, которая характеризуется векторами напряженности электрического поля E и вектором напряженности магнитного поля Н. Кстати, интересные факты о природе света можно узнать из нашей статьи.

Согласно теории Максвелла, световые волны поперечны. Это значит, что векторы E и H взаимно перпендикулярны и колеблются перпендикулярно вектору скорости распространения волны.

Поляризация наблюдается только на поперечных волнах.

Для описания поляризации света достаточно знать положение только одного из векторов. Обычно для этого рассматривается вектор E.

Если направления колебаний светового вектора каким-то образом упорядочены, свет называется поляризованным.

Возьмем свет на рисунке, который приведен выше. Он, безусловно, поляризован, так как вектор E колеблется в одной плоскости.

Поляризация света

Поляризация света по определению – это выделение из естественного света лучей с определенной ориентацией электрического вектора.

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Откуда берется поляризованный свет?

Свет, который мы видим вокруг себя, чаще всего неполяризован. Свет от лампочек, солнечный свет – это свет, в котором вектор напряженности колеблется во всех возможных направлениях. Но если вам по роду деятельности приходится весь день смотреть в ЖК-монитор, знайте: вы видите поляризованный свет.

Естественный, поляризованный  и частично поляризованный свет

Чтобы наблюдать явление поляризации света, нужно пропустить естественный свет через анизотропную среду, которая называется поляризатором и «отсекает» ненужные направления колебаний, оставляя какое-то одно.

Анизотропная среда – среда, имеющая разные свойства в зависимости от направления внутри этой среды.

В качестве поляризаторов используются кристаллы. Один из природных кристаллов, часто и давно применяемых в опытах по изучению поляризации света — турмалин.

Еще один способ получения поляризованного света — отражение от диэлектрика. Когда свет падает на границу раздела двух сред, луч разделяется на отраженный и преломленный.  При этом лучи являются частично поляризованными, а степень их поляризации зависит от угла падения.

Поляризация отражением

Связь между углом падения и степенью поляризации света выражается законом Брюстера.

Когда свет падает на границу раздела под углом, тангенс которого равняется относительному показателю преломления двух сред, отраженный луч является линейно поляризованным, а преломленный луч поляризован частично с преобладанием колебаний, лежащих в плоскости падения луча.

Линейно поляризованный свет — свет, который поляризован так, что вектор E колеблется только в одной определенной плоскости.

Практическое применение явления поляризации света

Поляризация света – не просто явление, которое интересно изучать. Оно широко применяется на практике.

Пример, с которым знакомы почти все – 3D-кинематограф. Еще один пример – поляризационные очки, в которых не видно бликов солнца на воде, а свет фар встречных машин не слепит водителя. Поляризационные фильтры применяются в фототехнике, а поляризация волн используется для передачи сигналов между антеннами космических аппаратов.

Фото, сделанные с применением поляризационного фильтра и без него

Поляризация — не самое сложное для понимания природное явление. Хотя если копнуть глубоко и начать основательно разбираться с физическими законами, которым она подчиняется, могут возникнуть сложности.

Корпускулярно-волновой дуализм

Опыты Лебедева убедили научный мир: свет способен оказывать давление на окружающие вещи. Перед исследователем возникло множество технических сложностей. Несмотря на это, он доказал, что фотоны света передают поверхностям ненулевой импульс, когда встречают преграду. Данное явление поставило ученых в тупик. Как можно было увязать волновые свойства и материальность массы воедино?

В итоге исследователям пришлось признать: любая элементарная частица – это одновременно и волна, и материальный объект. Фотоны имеют как признаки осциллятора (длину волны, частоту и амплитуду), так и характеристики материального вещества (массу, импульс и энергию). Это и есть принцип корпускулярно-волнового дуализма. Также требовалось понять, как именно существует и движется в пространстве, казалось бы, бесконечная волна с конечной массой. На помощь пришло понятие «квант» – это наименьший пакет некоего общего целого, который перемещается и взаимодействует с веществом. Например, поляризованный и естественный свет являются квантами электромагнитного поля. Но такая среда не единственная, подверженная квантованию. Существуют также кванты:

  • гравитационного поля (гравитоны предсказаны только теоретически, к доказательству их существования ученые уже подошли очень близко);
  • глюонного поля (глюоны, в отличие от гравитонов, найдены);
  • коллективного взаимодействия узлов кристаллической решетки твердого тела (фононы, например, отвечают за превращение электромагнитного излучения в кристаллах в звук).

Однако чтобы представить, почему свет поляризуется, описанных выше знаний недостаточно. Требуется напрячь пространственное воображение.

Закон Умова

Любой рассеянный свет с неба представляет собой солнечные лучи, которые претерпели многочисленные отражения от молекул воздуха, а также не раз переломились в ледяных кристаллах либо каплях воды. Вместе с этим, процесс поляризации характерен не только для направленного отражения (к примеру, от воды), но и для диффузного. В 1905 году было доказано, что чем темнее поверхность, от которой отражается световая волна, тем большей является степень поляризации. В историю это вошло, как закон Умова, названный в честь физика, которому удалось доказать эту зависимость. Если рассмотреть её на элементарном примере с асфальтным шоссе, то получается, что во влажном состоянии оно является более поляризованным, чем в сухом виде.

Закон Малюса

Если читателю кажется, что два поляризатора – это такая игра, что-то вроде упражнения для ума, то он ошибается. С помощью второго фильтра можно определить направление и степень поляризации потока света. Эти данные используют как непосредственно, например, при оценке свойств далеких галактик и туманностей, так и опосредованно, для оценки качества поверхностей.

Закон Малюса для поляризованного света выражается формулой:

I = k х I0 хcos2φ, где I – интенсивность конечного потока света, I0 – начального, k – коэффициент пропускания поляризатора,φ – угол между плоскостями поляризации падающего света и поляризатора.

Для релятивистского случая добавляются циклические частоты поляризованных волн. Но эти компоненты учитываются, только если источник света движется со скоростью, близкой к скорости света. Для применения расширенной формулы Малюса не обязательно преодолевать триста тысяч километров в секунду. Релятивистской считается скорость, равная одному проценту от скорости света в вакууме.

Однако дотошный читатель спросит: «А как же быть с циркулярной и эллиптической поляризацией?» Как мы уже упоминали выше, ответ прост. Необходимо представить этот вид поляризации как сумму двух линейно поляризованных волн.

Поляризация некоторых оптических явлений и небесных объектов

Поляризационные эффекты характерны и для таких интересных природных явлений, как гало (светящиеся дуги, которые время от времени появляются вокруг солнца либо луны), радуга и отдельные виды полярного сияния. Это связано с тем, что во всех указанных случаях одновременно происходит отражение света и его преломление. Другими словами, если вращать фильтр и смотреть сквозь него на радугу, в определённый момент она станет практически невидимой. Что касается поляризации некоторых астрономических тел, то самым ярким её примером стала крабовидная туманность, которая наблюдается в созвездии Тельца. Дело в том, что испускаемые ею световые излучения возникают во время торможения магнитным полем стремительно летящих электронов.

Поляризация света

Определение 2

Поляризация света – это явление выделения из пучка естественного света лучей с определенной ориентацией электрического вектора.

Как же получить поляризованный свет?

Определение 3

Французским инженером Э. Малюсом в 1809 году был открыт названный в его честь закон. В экспериментах Малюса свет последовательно пропускался сквозь пару одинаковых пластинок из турмалина (прозрачное кристаллическое вещество зеленоватого оттенка). Они могли поворачиваться друг относительно друга на угол φ, как это проиллюстрировано на рисунке 3.11.2.

Рисунок 3.11.2. Наглядный пример закона Малюса.

Интенсивность прошедшего света оказалась прямо пропорциональной cos2 φ: 

I~cos2φ.

Двойное лучепреломление точно также, как и закон Малюса не может быть объяснено с точки зрения теории продольных волн. Для продольных волн направление распространения луча представляет собой ось симметрии. В них любые направления в плоскости, нормальной, то есть перпендикулярной, лучу, равноправны.

Пример 1

В поперечной волне, к примеру, в бегущей по резиновому жгуту волне, направление колебаний и перпендикулярное ему направление не равноправны (рис. 3.11.3).

Рисунок 3.11.3. Поперечная волна в резиновом жгуте. Частицы совершают колебательные движения вдоль оси y. При повороте щели S затухнет волна.

Выходит, что асимметрия относительно направления распространения луча – это решающий признак, отличающий поперечную и продольную волны. Первым высказал догадку о поперечности световых волн Т. Юнг в 1816 году. Независимо от Юнга Френель тоже выдвинул концепцию поперечности световых волн, и даже смог обосновать ее с помощью большого количества опытов. Им была создана теория двойного лучепреломления света в кристаллах.

В середине 60-х годов XIX века Максвелл, взяв за основу совпадение известных значений скоростей распространения света и электромагнитных волн, сделал вывод о природе света. Ученый решил, что свет – это частный случай электромагнитных волн. К тому времени экспериментальным путем была подтверждена поперечность световых волн. По этой причине Максвелл предположил, что она является еще одним важным аргументом в пользу его выводов насчет электромагнитной природы света.

Пропала необходимость во введении особой среды распространения волн – эфира, который приходилось рассматривать как твердое тело. Благодаря этому электромагнитная теория света приобрела должную стройность.

В условиях электромагнитной волны вектора E→ и B→ направлены перпендикулярно друг к другу и находятся в плоскости, которая перпендикулярна направлению распространения волны плоскости. (рис. 2.6.3)

Рисунок 2.6.3. Синусоидальная (гармоническая) электромагнитная волна. Векторы E→, B→и υ→ взаимно перпендикулярны.

Определение 4

В каждом из процессов взаимодействия света с веществом электрический вектор E→ играет основную роль. По данной причине его называют световым вектором.

В чем заключается явление преломления света

С этим феноменом знакомы практически все, так как он широко встречается в повседневной жизни. Например, если смотреть на дно водоема с прозрачной водой, то оно всегда кажется ближе, чем есть на самом деле. Искажение можно наблюдать в аквариумах, этот вариант знаком практически всем. Но чтобы разобраться в вопросе, надо рассмотреть несколько важных аспектов.

Причины преломления

Тут решающее значение имеют характеристики разных сред, через которые проходит световой поток. Их плотность чаще всего различается, поэтому свет распространяется с разной скоростью. Это напрямую влияет и на его свойства.


При прохождении солнечного луча через призму он раскладывается на все цвета спектра.

При переходе из одной среды в другую (в месте их соединения), свет меняет свое направление из-за различий в плотности и других особенностей. Отклонение может быть разным, чем больше разница в характеристиках сред, тем большее искажение образуется в конечном итоге.

Примеры из жизни

Встретить примеры рассматриваемого явления можно практически везде, поэтому каждый может увидеть, как влияет преломление на восприятие предметов. Самые характерные варианты таковы:

  1. Если поместить ложку или трубочку в стакан с водой, то можно увидеть, как зрительно предмет перестает быть прямым и отклоняется, начиная от границы двух сред. Эта оптическая иллюзия используется в качестве примера чаще всего.
  2. В жаркую погоду на асфальте часто возникает эффект лужи. Это объясняется тем, что в месте резкого перепада температур (у самой земли) лучи преломляются так, что глаза видят небольшое отражение неба.
  3. Миражи также появляются в результате преломления. Тут все на порядок сложнее, но при этом данное явление встречается не только в пустыне, но и в горах и даже в средней полосе. Еще один вариант – когда видны объекты, находящиеся за линией горизонта.

  4. Принципы преломления используются и во многих предметах, используемых в повседневной жизни: очки, увеличительное стекло, дверные глазки, проекторы и аппараты для показа слайдов, бинокли и многое другое.
  5. Многие виды научного оборудования работают за счет применения рассматриваемого закона. Сюда относятся микроскопы, телескопы и другие сложные оптические приборы.

Что такое угол преломления

Углом преломления называют угол, который образуется вследствие явления преломления на границе соединения двух прозрачных сред с разными свойствами светопроницаемости. Он определяется от перпендикулярной линии, проведенной к преломляемой плоскости.


Если в стакан налить жидкость с большей плотностью, чем вода, то угол преломления станет больше.

Это явление обусловлено двумя законами – сохранения энергии и сохранения импульса. С изменением свойств среды скорость волны неизбежно меняется, но при этом ее частота остается одинаковой.

От чего зависит угол преломления

Показатель может меняться и в первую очередь зависит от характеристики двух сред, через которые проходит свет. Чем больше разница между ними, тем значимее зрительное отклонение.

Также угол зависит от длины излучаемых волн. С изменением этого показателя меняется и отклонение. В некоторых средах большое влияние оказывает и частота электромагнитных волн, но этот вариант встречается далеко не всегда.

Направления поляризации

В описании ориентации магнитного и электрического полей волны света обычно указывают только направление электрического поля. Вектор магнитного поля определяется требованием о перпендикулярности полей и их перпендикулярности к направлению движения. Естественный и линейно поляризованный свет отличаЕтся тем, что в последнем поля осциллируют в фиксированных направлениях по мере перемещения волны.

Возможны и другие состояния поляризации. В случае круговой векторы магнитного и электрического полей вращаются относительно направления распространения с постоянной амплитудой. Эллиптически поляризованный свет находится в промежуточном положении между линейной и круговой поляризациями.

Практическое применение явления

Многие примеры современного использования поляризации основаны на успокоении яркости солнечных лучей во избежание усталости глаз. Так, поляроидные фильтры используют моряки, чтобы погасить свечение водных бликов, которые мешают обзору. Также они могут использоваться на иллюминаторах самолетов, пароходов или на окнах поездов.

Отличным примером будет и фото- и видеотехника. Для съемки на открытом воздухе при ярком освещении используются поляризационные фильтры, которые убирают «засвет» и выравнивают светотеневой баланс изображения.

В астрофизике или спектроскопии такие фильтры тоже используются. Они позволяют вычленять участки из исследуемого спектра и провоцирующие изменения насыщенности или цветовых оттенков. Чаще всего их применяют для изучения звездных скоплений, туманностей и различных космических тел.

Фильтр поляроид

Поляризованный и естественный свет разделяются при прохождении через ряд материалов, наиболее распространенным из которых является поляроид, созданный американским физиком Эдвином Лэндом. Фильтр состоит из длинных цепочек молекул углеводородов, ориентированных в одном направлении путем процесса термической обработки. Молекулы избирательно поглощают излучение, электрическое поле которого параллельно их ориентации. Свет, выходящий из поляроида, линейно поляризован. Его электрическое поле перпендикулярно направлению ориентации молекул. Поляроид нашел применение во многих областях, включая солнцезащитные очки и светофильтры, снижающие эффект отраженного и рассеянного света.

Вопросы на тему «Поляризация света»

Вопрос 1. Что такое поляриция?

Ответ. Поляризация света – это явление выделения из пучка естественного света лучей с определенной ориентацией электрического вектора.

Вопрос 2. Приведите пример проявления поляризации в природе.

Ответ. В качестве широко распространённого случая поляризации света в природе можно считать блики на стеклянных витринах и водной поверхности.

Вопрос 3. Как люди используют феномен поляризации?

Ответ. Среди практических применений поляризации можно выделить:

  • поляризационные очки;
  • поляризационные фильтры в фототехнике;
  • 3-D кинотеатры.

Вопрос 4. Сформулируйте закон Брюстера.

Ответ. Закон Брюстера выражает связь показателей преломления двух диэлектриков с таким углом падения света, при котором свет, отражённый от границы раздела диэлектриков, будет полностью поляризованным в плоскости, перпендикулярной плоскости падения.

tgεB=n21

Вопрос 5. Сформулируйте закон Малюса.

Ответ. Интенсивность света, прошедшего через поляризатор, прямо пропорциональна произведению интенсивности падающего плоско поляризованного света I и квадрату косинуса угла между плоскостью падающего света и плоскостью поляризатора.

I=Icos2α

Нужна помощь в решении задач и выполнении других заданий по учебе? Обращайстесь в профессиональный сервис помощи студентам 24/7.

Примеры поляризации света и способ её устранения

Поляризация света, источником которого является чистое небо, – это лишь самый простой и широко использующийся пример этого явления. Другими довольно распространёнными случаями можно назвать блики, что лежат на стеклянных витринах и поверхности воды. При необходимости устранить их можно при помощи специальных поляроидных фильтров, которыми чаще всего пользуются фотографы. Они становятся незаменимыми, если нужно запечатлеть на фото какие-либо защищённые стеклом картины либо музейные экспонаты. Принцип их действия основан на том факте, что любой отражённый свет в зависимости от угла своего падения имеет ту или иную степень поляризации. Таким образом, при взгляде на блик можно без труда подобрать такой угол расположения фильтра, при котором он будет подавлен, вплоть до полного исчезновения. Аналогичного принципа придерживаются производители качественных противосолнечных очков. Благодаря использованию в их стекле поляроидных фильтров можно убрать мешающие блики, исходящие от поверхности мокрого шоссе либо морской поверхности.

Неполяризованный свет

Атомы на поверхности нагретой нити накаливания, которые генерируют электромагнитное излучение, действуют, независимо друг от друга. Каждое излучение можно приблизительно смоделировать в виде коротких цугов продолжительностью от 10 -9 до 10 -8 секунды. Электромагнитная волна, исходящая от нити накаливания, представляет собой суперпозицию этих цугов, каждый из которых имеет собственное направление поляризации. Сумма ориентированных случайным образом цугов образует волну, вектор поляризации которой изменяется быстро и беспорядочно. Такая волна называется неполяризованной. Все естественные источники света, включая Солнце, лампы накаливания, люминесцентные лампы и пламя, производят такое излучение. Однако естественный свет часто бывает частично поляризован из-за множественного рассеяния и отражения.

Таким образом, отличие поляризованного света от естественного состоит в том, что в первом колебания совершаются в одной плоскости.

Явление поляризации света в природе

Самым ярким примером является солнечное свечение, которое рассеивается на молекулах воздуха. Это явление можно наблюдать с помощью николя или поляризованного светофильтра. Также можно использовать и обычное стекло, затемненное с одной из сторон. Попадая на такое стекло, луч будет практически полностью поляризован. Если постепенно поворачиваться вокруг направления луча, держа стекло неподвижно, можно проследить за этим наглядно. Изображение неба, захваченное стеклом, будет максимально ярким, если вы стоите лицом или спиной солнцу. Если же вы встанете под прямым углом к направлению луча, изображение будет темнее.

По своей сути, любой рассеянный поток свет с неба — пример поляризации, когда солнечные лучи бесконечное количество раз отразились от молекул воздуха.

Сложности восприятия поляризации как понятия

Надеемся, мы прояснили для читателей понятия естественного и поляризованного света. Однако избежать трудностей в пространственном восприятии этих понятий невозможно. Что же необходимо сделать, чтобы осознать, как вращается вектор амплитуды?

Первым барьером может стать непонимание, что такое вектор. Прежде всего, это направление движения. Когда человек ведет машину, вектор его движения – это то, куда направлен нос автомобиля и в какую сторону развернуты шины, а не куда смотрят глаза человека. Если бы все водители поняли это, возможно, на наших дорогах было бы меньше аварий. Как мы уже упоминали, в случае волны вектор амплитуды – это направление, в котором «колеблется» волна в конкретный момент времени.

Второй барьер может заключаться в непонимании процессов излучения. Для восполнения пробелов стоит вспомнить, что такое электронные уровни в атомах и почему переход между ними сопровождается либо излучением, либо поглощением энергии. Поняв, откуда берутся фотоны, читатель, возможно, лучше разберется в поляризации света.

Естественный и поляризованный свет отличаются ненамного. Если для человека непонятно, почему, мы еще раз повторим: получить поляризованный свет сразу при излучении довольно непросто. Но выделить изо всех возможных хаотически направленных колебаний естественного света только некоторые конкретные гораздо проще. Сделать это можно с помощью специальных кристаллических или полимерных веществ.

Волны бывают двух видов. В продольных колебательное возмущение параллельно направлению их распространения. Примером может служить прохождение звука в воздухе. Поперечные волны состоят из возмущений, которые находятся под углом 90° к направлению перемещения. Так, например, волна, проходя горизонтально через массу воды, вызывает вертикальные колебания на ее поверхности.

Определение поляризации света

В результате распространения волн в среде происходят . вспомните пройденное. следующие явления:

  • а) колебательное движение частиц среды, в которой распространяется волна: частицы среды совершают только колебания около положения равновесия, и в волне не происходит перенос вещества;
  • б) взаимодействие частиц среды с соседними частицами: в результате взаимодействия частиц среды происходит перенос энергии.

Поперечная волна – это волна, колебания частиц среды в которой происходят перпендикулярно направлению распространения волны. Поперечные волны могут распространяться в твердых средах и на поверхности жидкостей. Поперечные волны распространяются в среде в виде выпуклостей и впадин.

Свет, отраженный от белого снега зимой, и свет фар встречных автомобилей ночью беспокоят водителей (а) и иногда становятся причиной дорожно-транспортных происшествий. Водителям рекомендуют в таких ситуациях пользоваться поляроидными очками, которые обеспечивают нормальное видение предметов вокруг (b).

Одним из важнейших результатов теории Максвелла стало го, что свет является поперечной электромагнитной волной. Согласно этой теории, свет, являясь электромагнитной волной, представляет собой распространение в пространстве колебаний векторов напряженности электрического и индукции магнитного полей (). Эти колебания происходят по всем направлениям в плоскостях, перпендикулярных друг другу и направлению скорости распространения (е). Например, белый свет, излучаемый Солнцем, является естественной световой волной.

Явления интерференции и дифракции наблюдаются и в продольных, и в поперечных волнах, поэтому с их помощью невозможно определить поперечность световых волн. Однако существует другое оптическое явление, с помощью которого это можно подтвердить. Это явление поляризации света.

Поляризованный свет – часть естественного света, отделенная от него специальным приспособлением, в которой колебания вектора происходят в определенной плоскости (см. е).

Одним из таких приспособлений, поляризующих свет, является кристалл турмалина. Один из опытов, проведенных с помощью кристаллов турмалина, заключается в следующем: на пластину турмалина направляют перпендикулярный луч белого света. На первый взгляд кажется, что прошедший через него свет не изменяется. Но на самом деле кристалл турмалина пропускает свет, в котором вектор колеблется только в одной определенной плоскости М (см. е). Значит, через пластину турмалина проходит плоскополяризованный свет. Такая пластина называется поляроидом. Чтобы проверить, действительно ли поляризован свет, перед прошедшим через поляроид свет ставят вторую такую же пластину – анализатор.

Становится понятно, что свет полностью проходит сквозь обе пластины, когда оси 00′ поляроида и анализатора параллельны (f). При изменениях угла между осями пластин в пределах наблюдается уменьшение интенсивности проходящего сквозь них света – частичное прохождение света. Но когда оси 00′ перпендикулярны друг другу, свет не проходит сквозь анализатор (g).

Рекомендую подробно изучить предметы:
  1. Физика
  2. Атомная физика
  3. Ядерная физика
  4. Квантовая физика
  5. Молекулярная физика
Ещё лекции с примерами решения и объяснением:
  • Линзы в физике
  • Глаз как оптическая система
  • Звук в физике и его характеристики
  • Звуковые и ультразвуковые колебания
  • Интерференция света
  • Дифракция света
  • Принцип Гюйгенса — Френеля
  • Прохождение света через плоскопараллельные пластинки и призмы

Поляризация света: решение задач

Глупо начинать решать задачи на поляризацию, не зная, что это такое. Поэтому, сначала почитайте теорию, а уже потом приступайте к практике. Приступая к решению задач, рекомендуем держать под рукой полезные формулы и руководствоваться универсальной памяткой по решению физических задач.

Задача на поляризацию №1

Условие

Пучок естественного света, идущий в воде, отражается от грани алмаза, погруженного в воду. При каком угле падения εB отраженный свет полностью поляризован? 

Решение

Воспользуемся формулой для угла Брюстера. Согласно закону Брюстера, свет, отраженный от диэлектрика, полностью поляризован в том случае, если тангенс угла падения:

tgεB=n21

где n21 — относительный показатель преломления второй среды (алмаза) относительно первой (воды).

Относительный показатель преломления равен отношению абсолютных показателей преломления этих сред. Следовательно:

tgεB=n2n1εB=arctgn2n1=61°12′

Ответ: εB=61°12′

Задача на поляризацию №2

Условие Пучок естественного света падает на полированную поверхность стеклянной пластины, погруженной в жидкость. Отраженный от пластины пучок света составляет угол φ=97° с падающим пучком. Определить показатель преломления n жидкости, если отраженный свет полностью поляризован

Решение

Также пользуясь законом Брюстера, запишем:

tgεB=n2n1

Согласно условию задачи, отраженный луч повернут на угол φ относительно падающего луча. Так как угол падения равен углу отражения, то:

εB=φ2tgφ2=n2n1n1=n2tgφ2=1,33

Ответ: n1=1,33

Задача на поляризацию №3

Условие

На какой угловой высоте φ над горизонтом должно находиться Солнце, чтобы солнечный свет, отраженный от поверхности воды, был полностью поляризован?

Решение

В данном случае свет распространяется в воздухе, а значит, n1=1.

tgεB=n2n1=n2εB=arctgn2

Угловую высоту солнца над горизонтом найдем следующим образом:

φ=90°-arctg1,33=37°

Ответ: φ=37°.

Задача на поляризацию №4

Условие

Угол Брюстера εB при падении света из воздуха на кристалл каменной соли равен 57°. Определить скорость света в этом кристалле.

Решение

Для начала вспомним, что показатель преломления среды определяется как отношение скорости света в вакууме к скорости света в данной среде:

n1=cV1n2=cV2

Теперь запишем закон Брюстера:

tgεB=n2n1=V1V2

По условию, свет падает из воздуха, значит:

V1=ctgεB=cV2V2=ctgεB=ctg57°=1,94·108 мс

Ответ: V2=1,94·108 мс.

Задача на поляризацию №5

Условие 

Анализатор в k=2 раза уменьшает интенсивность света, приходящего к нему от поляризатора. Определить угол α между плоскостями пропускания поляризатора и анализатора. Потерями интенсивности света в анализаторе пренебречь.

Решение

Для решения этой задачи запишем закон Малюса:

I=Icos2α

Здесь I — интенсивность плоскополяризованного света, прошедшего через анализатор; I — интенсивность плоскополяризованного света, падающего на анализатор; α — угол между направлением колебаний светового вектора волны, падающей на анализатор, и плоскостью пропускания анализатора.

Из условия известно, что:

k=2=II

Отсюда:

II=cos2αcos2α=12α=arccos12=45°

Ответ: α=45°

Поляризация света кристаллом

Обычные диэлектрики анизотропны и особенности света при попадании на них зависят главным образом от угла падения. Свойства кристаллов отличаются, при попадании на них света можно наблюдать эффект двойного преломления лучей. Это проявляется так: при прохождении через структуру образуется два преломленных луча, которые идут в разных направлениях, их скорости также различаются.

Чаще всего в экспериментах используют одноосные кристаллы. В них один из пучков преломления подчиняется стандартным законам и именуется обыкновенным. Второй образуется иначе, его называют необыкновенным, так как особенности его преломления не соответствуют обычным канонам.


Так выглядит двойное лучепреломление на схеме.

Если вращать кристалл, то обыкновенный луч останется неизменным, а необыкновенный будет перемещаться по окружности. Чаще всего в экспериментах используют кальцит или исландский шпат, так как они хорошо подходят для исследований.

На основании экспериментов с кристаллами Этьен Луи Малюс сформулировал закон в 1810 году, который получил его имя. Он вывел четкую зависимость линейно-поляризованного света после его прохождения через поляризатор, сделанный на основе кристаллов. Интенсивность луча после прохождения кристалла уменьшается пропорционально квадрату косинуса угла, образованного между плоскостью поляризации входящего луча и фильтра.

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий