Виды и различия солнечных коллекторов
На сегодняшний день распространение среди промышленно изготавливаемых солнечных коллекторов получили два вида систем:
- плоские солнечные панели;
- вакуумные (вакуумированные) трубчатые коллекторы.
Плоская солнечная панель
Является распространенным типом солнечного коллектора, используемого в современных системах гелиоэнергетики. Широкое распространение данный тип получил вследствие относительной дешевизны и простоты, как устройства, так и эксплуатации. Недостатком плоских солнечных коллекторов является значительное (до двух раз) понижение КПД в условиях отрицательных температур наружного воздуха.
Конструкция плоского солнечного коллектора.
Конструктивно представляет собой панель с площадью поглощающей поверхности 2-2,5 м2, выполненную из алюминиевых или стальных сплавов. Лицевая часть выполнена в виде листа специального гелиостекла, что обеспечивает максимальное поглощение энергии солнечного света и минимальные потери энергии с отраженными и рассеянными лучами. Непосредственно под гелиостеклом расположен поглотитель, выполняемый в виде плоской трубки из медных или алюминиевых сплавов, имеющих высокий коэффициент теплопередачи.
Трубка, как правило, имеет радиальное оребрение, что значительно повышает коэффициент теплопередачи поглотителя. На поглотитель наносится покрытие с высоким коэффициентом поглощения в спектрах теплового излучения, что повышает общий КПД коллектора. Под поглотителем располагается слой тепловой изоляции, уменьшающий тепловые потери системы в окружающую среду. Необходимая тепловая мощность солнечного коллектора достигается включением нескольких панелей в единую солнечную батарею или коллектор.
Вакуумный (вакууммированный) трубчатый коллектор
Дорогостоящий вид солнечного коллектора вследствие сложного изготовления и ряда преимуществ перед плоскими солнечными панелями. Конструктивно представляет собой ряд парных стеклянных труб, спаянных между собой, из пространства между которыми откачан воздух. Вакуум в пространстве между трубками является прекрасным тепловым изолятором и предотвращает тепловые потери в окружающую среду от теплоносителя. В меньшую трубу вводится медная, алюминиевая или стеклянная трубка поглотителя. Трубы верхней частью вводятся в распределитель, в котором циркулирует теплоноситель. Вакуумные (вакуумированные) трубчатые коллекторы по типу распределителя подразделяются на два типа: с плоской тепловой трубой и прямоточные.
Коллекторы с плоской трубой
Вакуумный трубчатый солнечный коллектор с плоской тепловой трубой – конструкция.
Представляют собой рекуперативный теплообменник, расположенный в распределителе. В этом случае теплопередача от нагретого теплоносителя вакуумной трубы к теплоносителю циркуляционного контура теплоснабжения здания происходит через стенку и теплоносители этих контуров не смешиваются. Преимущества перед прямоточными коллекторами состоят в сохранении высоких показателей работы при температуре окружающей среды до -45оС, возможности замены отдельной вакуумной трубки, вышедшей из строя, без разбора коллектора и прекращения его работы, а также в возможности регулирования угла установки каждой вакуумной трубки в пределах одного коллектора.
Прямоточные коллекторы
Прямоточный вакуумный трубчатый солнечный коллектор – конструкция.
Объединяют циркуляционный и обогревающийся контур. В распределителе проходят подающий и циркуляционный трубопроводы, к которым непосредственно присоединяются вакуумные трубки. Теплоноситель подается в распределитель по подающему трубопроводу, из которого попадает в вакуумную трубку, где проходит обогрев. Нагретый теплоноситель возвращается в обратный трубопровод и уходит непосредственно на нужды теплоснабжения. Преимущества прямоточных коллекторов перед вакуумными состоят в отсутствии промежуточной стенки между теплоносителями, что снижает тепловые потери и в возможности устанавливать коллектор на любых поверхностях под любыми углами, поскольку циркуляция теплоносителя в пределах всего коллектора будет осуществляться насосом.
Новое направление энергетического комплекса
На сегодняшний день человечество внедряет в практику и успешно развивает устройства, позволяющие ему добывать свет и тепло без использования угля, нефти и газа. В народном хозяйстве многих государств возникла новая подотрасль – солнечная энергетика. Это одно из направлений нетрадиционной энергетики. В ее основе лежит принцип непосредственного использования излучения Солнца.
Цель, которую преследует солнечная энергетика, – получение столь необходимого для человечества тепла и света. Новую отрасль порой называют гелиоэнергетикой. Ведь Helios в переводе с греческого – Солнце.
Что выбрать
Давайте разберёмся, какой вариант альтернативной энергии лучше. Солнечные батареи являются наиболее предпочтительным вариантом из-за простоты и экологичности. Однако они не работают в ночное время суток.
Ветрогенераторы хорошо подходят для местностей, где постоянно дуют сильные ветры. Функционируют и днём, и ночью, но если потоки воздуха ослабевают – эффективность становится равна нулю. Наилучшим вариантом является комбинация этих двух устройств. Тогда вы можете быть почти на 100% уверенными, что никогда не останетесь без электричества.
Генератор для дома — назначение устройства, подбор мощности и советы по ремонту основных типов генераторов
- Ветряные электростанции для дома: подбор современных моделей и расчет их эффективности + инструкция как сделать своими руками
Бензиновый генератор — выбор, подключение и установка современных устройств. Рейтинг лучших генераторов для дома 2021 года!
А если вы нуждаетесь в горячем водоснабжении и отоплении, дополните систему дома тепловыми насосами. Они не требовательны в обслуживании, отсутствует необходимость покупать и где-то складировать топливо, как в случае, например, с твердотопливным котлом.
Что можно использовать в частном доме
Выработка электричества при помощи АЭС нужна не только для фирм и государства, но для частного дома. Имеются разные конструкции, которые вырабатывают электроэнергию нетрадиционным методом.
АЭС позволит вам сэкономить на счетах электричества, а кроме того, вы никогда не останетесь без света при отключении электричества.
Солнечные панели
Этот тип получения электроэнергии поможет получить электричество для дома. Для приобретения этого устройства вам необходимо знать мощность и найти место для фиксирования. Эта покупка в скором времени окупиться и вы даже уйдете в плюс.
Солнечные коллекторы
Принцип действия этой конструкции следующий: она нагревается на солнце, затем направляет накопленное тепло к воде, и тем самым нагревает ее. В результате вы будете всегда иметь горячую воду, а также отопление в любое время.
Ветрогенераторы
Ветровые генераторы собирают энергию, которая будет впоследствии использоваться бытовыми изделиями. Как правило, устанавливают несколько сооружений, которые включаются по очереди в случае аварийного выключения другого.
Тепловые насосы
Прибор всегда нагревает дом до требуемой температуры
Многие оборудования оснащены кондиционером, что особенно важно в жаркую погоду. В роли источника электроэнергии могут применяться различные виды энергий
Производство биогаза
Изготовление биогаза в домашних условиях позволяет заменить использование традиционного топлива на недорогой аналог. Такую конструкцию можно изготовить своими руками или приобрести в магазине.
Мини гидроэлектростанция
Мини гидроэлектростанция — это маленькая станции, которая вырабатывает электричество для жилья.
Применяют это сооружения с целью главного или запасного источника электроэнергии. Переносные ГЭС хорошо подойдут для местностей, к которым трудно добраться.
Прочие возможности
Имеются и другие возможности для выработки электричества, но они обойдутся вам в значительную сумму. К примеру, водородные котлы, которые пришли на замену традиционному отоплению дома без выбросов вредных веществ. Тепло вырабатывается за счет прохождения хим. реакций между водородом и кислородом.
Недостатки солнечной энергетики
На сегодняшнем уровне у существующих технологий аккумулирования и преобразования световой, инфракрасной, ультрафиолетовой энергии солнца длительный срок окупаемости. Это не единственный недостаток. Основной проблемой солнечной энергетики остается недостаточное развитие технологии. Утешает то, что отрасль развивается.
Низкий КПД
Максимальный коэффициент полезного действия световых станций любого типа не превышает 30%. При сжигании топлива отдача выше. Поток лучей непостоянен, он прекращается, когда часть планеты входит в теневую область. Потребление энергии в темную часть суток возрастает. Приходится решать проблемы аккумулирования энергии. Со временем КПД фотоэлементов снижается, проводимость полупроводников уменьшается, панели приходится менять.
Большая площадь, занимаемая системой
Для размещения зеркал на гелиостанциях, монтажа батарей требуется пространство, исчисляемое тысячами гектаров. Люди находят выход из положения: размещают панели на вертикальных щитах, крышах строений. В промышленных масштабах такое невозможно, территория станция занимает несколько десятков футбольных полей.
Зависимость работы от погодных условий
На процесс генерации влияет погода. При сильной облачности большая часть лучей рассеивается, не достигая пространства. Жесткие панели страдают от снеговой нагрузки, града. Эффективность снижается, когда на батареях скапливается грязь. Крепежные элементы испытывают воздействие погодных факторов.
Схемы установки солнечного коллектора
В автономных системах обогрева и горячего водоснабжения обязательно нужно использовать накопительный бак для аккумуляции тепловой энергии. Связано это с тем, что распределение тепла, которое генерирует гелиоустановка, не пропорционально расходу энергии. Поэтому полученные ресурсы сначала аккумулируют в специальной емкости, а потом только потребляют по мере необходимости.
Специалисты рекомендуют использовать для этой цели стандартный накопительный бак для системы горячего водоснабжения или, как альтернативный вариант, — буферную емкость из автономной отопительной системы. Грамотно построенная конструкция подразумевает соединение коллектора с дополнительным теплообменником, который напрямую контактирует с накопительным баком. Существует пять проверенных на практике схем подключения оборудования.
№1. ГВС с естественной циркуляцией материала-теплоносителя
Данная схема используется преимущественно на малых площадях (например, для летнего душа), но вполне применима и для небольших строений — бани или дачного домика. Солнечный коллектор нужно установить ниже уровня накопительного бака не более, чем на 1 метр. Благодаря этому будет обеспечена естественная циркуляция жидкости в системе. Для соединения аккумулирующей емкости и коллектора желательно использовать трубы на ¾ дюйма.
Если вы планируете использовать горячую воду в вечернее время, накопительный бак нужно утеплить или купить готовую емкость, функционирующую по аналогии с термосом
Обратите внимание, что слой утеплителя не должен быть меньше 10 см. Это самая доступная схема подключения солнечного коллектора, однако она имеет один недостаток — минимальную инерционность. При минусовой температуре окружающей среды воду придется сливать, чтобы не допустить разгерметизации водопроводных труб
При минусовой температуре окружающей среды воду придется сливать, чтобы не допустить разгерметизации водопроводных труб.
№2. Зимний вариант установки солярного коллектора для ГВС
В данном случае теплоноситель для солнечных коллекторов — антифриз. Это позволяет избежать замерзания воды в трубах зимой. Но здесь нужно использовать аккумулирующую емкость косвенного нагрева с медным змеевиком. Непрерывная циркуляция жидкости происходит непосредственно между внутренними магистралями гелиосистемы и змеевиком, установленным в накопительном баке.
Данная схема монтажа рассчитана на естественную циркуляцию, но желательно «прогонять» теплоноситель для гелиосистем принудительно, используя циркуляционный насос. Дополнительно нужно установить расширительный бак.
№3. Схема подключения коллектора для отопления дома
Этот вариант подразумевает использование емкости косвенного нагрева, которая работает на твердом или «голубом» топливе. Поздней весной и летом котел можно отключать, поскольку воду будет нагревать коллектор. А вот зимой эффективность гелиосистем в северо-восточных регионах России не очень велика, так как интенсивность солнечного излучения минимальна. По этой причине коллектор используют в качестве источника дополнительного подогрева к отопительным системам.
Но даже в этом случае владелец дома получает возможность более рационально расходовать традиционные энергоресурсы. Чтобы обеспечить отопление дома в зимний период при помощи только одного солнечного коллектора, габариты всей конструкции должны составлять не менее 30–40% от площади здания.
№4. Монтаж гелиосистемы для отопления и ГВС
Типовая схема подключения объединяет сразу два варианта, то есть подходит одновременно для организации автономного отопления и горячего водоснабжения. Здесь применяется двухконтурная теплоаккумулирующая емкость— помимо медного змеевика, монтируется также дополнительный внутренний резервуар.
Такая схема установки дает возможность отделить техническую жидкость от питьевой воды. Для автоматизации процесса нагрева теплоносителя в систему интегрируют специальный контроллер солнечного коллектора, который позволяет избежать перерасхода энергоресурсов за счет контроля над температурой теплоносителя в гелиосистеме и температурой воды в буфере.
№5. Установка коллектора для подогрева бассейна
Данная схема не подходит к системе отопления, а используется, когда необходимо нагреть воду в открытом бассейне переносного типа. Чтобы обеспечить циркуляцию жидкости, допускается использовать стандартную погружную помпу. Если на вашем участке находится стационарный бассейн, для большего удобства оборудование лучше подключить к бытовой автоматизированной насосной станции.
Факторы, которые способствуют развитию рынка
Главным фактором, который способствует развитию солнечной энергетики, большинство экспертов называет наличие государственной помощи.
Программа поддержки возобновляемой генерации
Среди таких инициатив — программа поддержки возобновляемой генерации — ДПМ ВИЭ (договоры на поставку мощности). В ее рамках проектам возобновляемой энергетики, прошедшим отбор, гарантируется возврат инвестиций за счет повышенных платежей оптовых потребителей в течение 15 лет.
Программа предусматривает квоту на создание 5,4 ГВт мощностей ВИЭ до 2024 года. «Благодаря ее действию удалось построить фундамент для развития отрасли солнечной энергетики в России — были созданы высокотехнологичные производства основного оборудования для солнечных электростанций. В том числе на базе разработанных отечественных технологий», — комментирует Антон Усачев.
По словам Олега Перцовского, именно с помощью инструментов поддержки со стороны государства установленная мощность солнечной энергетики стремительно выросла с 130 МВт в 2021 году до 1,2 ГВт в первом квартале 2020-го.
«Это очень немного в абсолютном выражении, но динамика хорошая. Что будет происходить в кратко- и среднесрочной перспективе, зависит от развития ситуации с пандемией и динамики последующего восстановления экономики. Однако я думаю, что долгосрочное развитие ВИЭ в целом и солнечной энергетики в частности будет уверенно продолжаться, и этот тренд уже вряд ли изменится».
Развитие микрогенерации
Вторая крупная государственная инициатива по поддержке российской солнечной энергетики — развитие микрогенерации. В соответствии с законом, принятым в 2021 году, потребители могут продавать излишки электроэнергии, выработанные в том числе с помощью солнца, в сеть. После принятия актов, регламентирующих взаимодействие потребителей с сетями, у людей появится дополнительный стимул устанавливать у себя солнечные модули, считает заместитель генерального директора ГК «Хевел».
Татьяна Андреева не разделяет оптимистичную позицию коллег касательно программ государственной поддержки. По мнению эксперта eclareon, закон о микрогенерации в России недостаточно проработан, как и поправки в Налоговом Кодексе РФ и в других законодательных актах.
«И очень жаль, что «Зеленый тариф» для владельцев микрогенерационных систем сделали столь низким. Уровень оптовой цены даже ниже той, что платит потребитель за энергию от привычной электросети. Этот факт не очень сильно повышает инвестиционную привлекательность проекта, хотя все же позволяет окупать оборудование быстрее.
В этом плане меры, принятые в Германии 20 лет назад, такие как программа «10 000 солнечных крыш» наряду с законом о ВИЭ, были более эффективными и привели к настоящему буму солнечной микрогенерации».
Использование солнечной энергии
Помимо удовлетворения индивидуальных запросов потребителей электричества, солнечную энергию используют в различных сферах жизнедеятельности:
- Авиация. Благодаря солнечной энергии, самолеты могут не расходовать топливо на протяжении некоторого времени.
- Автомобилестроение. Панели могут использоваться для зарядки электромобилей.
- Медицина. Благодаря разработкам южнокорейских ученых, мир увидел солнечную батарею, которую используют для приборов, поддерживающих функциональность организма человека, путем вживления под кожу.
- Космонавтика. Гелиопанели устанавливаются, например, на спутниках и космических телескопах.
Это всего лишь несколько примеров. Кроме этого, солнечные панели широко используют для обеспечения электроэнергией зданий, а также целых населенных пунктов.
Надеемся, что вышеописанные преимущества и недостатки использования солнечных батарей помогут вам определиться с решением, стоит ли вам обратиться к альтернативным источникам энергии.
Как вам статья?
Мне нравитсяНе нравится
Ветрогенераторы
Представляют собой комбинацию установленной на специальной мачте ветротурбины с лопастями и электрогенератора. При прохождении потоков воздуха через данную установку лопасти под их воздействием начинают вращаться и приводят в движение соединённый с редуктором внутренний вал.
Такая конструкция позволяет увеличить первоначальную скорость вращения. Редуктор подключён к генератору, который при вращении ротора вырабатывает электрический ток. Его излишки накапливаются в установленных аккумуляторах.
В зависимости от расположения оси вращения ветрогенераторы подразделяются на горизонтальные и вертикальные. Первый тип более популярен. Многие модели оснащены системой автоматического разворота по направлению ветра, значительно увеличивающей эффективность работы установки.
Преимущества данных устройств во многом аналогичны солнечным батареям. КПД может составлять от 25% до 47% в зависимости от конкретной модели и погодных условий.
Основными недостатками являются шум во время работы и низкочастотный инфразвук, негативно влияющий на состояние здоровья. По этой причине устанавливать мачту с устройством следует как можно дальше от жилья.
Преимущества и недостатки использования солнечной энергии
Преимущества использования солнечной энергии привели к тому, что уже сегодня мы видим ее использование в самых разных видах человеческой деятельности.
Главными преимуществами являются:
- Неисчерпаемость энергии солнца в ближайшие 4 миллиарда лет;
- Доступность данного вида энергии – именно с ним безопасно и эффективно сегодня работают и фермеры, и хозяева частных домов, и заводы-гиганты;
- Бесплатность и экологическая чистота вырабатываемой энергии;
- Перспектива развития данного источника энергии, который становится все более актуальным в силу роста цен на другие виды энергии;
- Т.к. количество ежегодно вводимого в эксплуатацию оборудования и его надежность растет, уменьшается стоимость вырабатываемого киловатт часа солнечной энергии.
К условным недостаткам солнечной энергии можно отнести:
- Основным недостатком солнечной энергии является прямая зависимость количества получаемого света и тепла от влияния таких факторов, как погода, время года или же суток. Логическим последствием в таком случае является необходимость аккумулировать энергию, что увеличивает стоимость системы;
- Для производства элементов оборудования данного предназначения применяются редкие а, следовательно, дорогостоящие элементы.
ТОП-3: самые популярные способы получения солнечной энергии
Популярность тех или иных способов обуславливается такими факторами, как эффективность, надежность и стоимость технологии:
- Использование солнечных панелей (батарей);
- Солнечные коллекторы (гелиосистемы);
- Гелиотермальные электростанции.
Батареи и модули знакомы всем, кто хоть раз интересовался альтернативным способом получения электричества. Такие панели могут использоваться как в промышленных масштабах, так и для частных нужд. С помощью солнечной батареи можно решить множество задач: зарядить телефон, питать систему автономного освещения, обеспечить электричеством дом или целое поселение. В зависимости от поставленных целей, внутреннее устройство и принцип работы батарей отличаются друг от друга.
Гелиосистемы превращают энергию Солнца в тепловую. Они различаются между собой по типу конструкции и объемам производительности. Так плоские гелиосистемы сохраняют прежние объемы мощности при низкой температуре, зато вакуумные на 40% эффективней в ясную погоду. Любопытно, как использовать эту солнечную энергию в домашних условиях? Гелиосистемы могут быть компактных размеров: их устанавливают прямо в доме, чтобы сэкономить на отоплении и нагреве воды. В промышленных масштабах их используют для сушки сырья или для уменьшения нагрузки на отопительные узлы.
Гелиотермальные электростанции способны обеспечивать электричеством целые города. Их конструкция представляет собой управляемые компьютером зеркала, что ловят лучи и направляют их в центр башни. Под воздействием концентрированной солнечной энергии вода в башне становится паром, что обеспечивает достаточный уровень давления для вращения турбины, которая и вырабатывает электричество. Для сравнения: гелиотермальная электростанция Иванпа Солар вырабатывает столько же электричества, сколько и средняя московская ТЭЦ.
- Тонкопленочная технология отвоевывает позиции на рынке солнечной энергетики
- Солнечная энергетика захватывает новые стихии
- Ложка дегтя в бочке с солнечными батареями
- Какая жизнь без света?
Вам нужно войти, чтобы оставить комментарий.
Источник
Солнечные коллекторы
Принцип их работы заключается в преобразовании солнечного излучения в тепло. Коллекторы можно разделить на группы:
- Вакуумные.Используются в быту, когда вам нужна горячая вода. Состоят из стеклянных трубочек, которые нагреваются от солнечных лучей. В свою очередь, они уже нагревают воду.
- Плоские. Довольно распространены среди пользователей альтернативных источников энергии. Удобны в использовании для бытовых отопительных потребностей, а также для подогрева воды.
- Интегрированные. Считаются наиболее простыми и используются в газовых котлах для подогрева воды. Подогретая вода накапливается в баке для последующего потребления.
- Воздушные. Предназначены для воздушного отопления, рекуперации воздушных масс и для осушительных установок.
Для того, чтобы в последующем использовать солнечную энергию, вначале коллекторы накапливают ее в модулях, которые ставятся на крыше. Их конструкция следующая: это стеклянные трубки и пластины, окрашенные в черный цвет для лучшего поглощения излучения солнца.
Выбираем солнечный коллектор
Конструкция солнечного коллектора
Для эффективной работы отопления с помощью солнечной энергии рекомендуется установка коллекторов. Они представляют собой систему трубопроводов, по которым протекает теплоноситель. Для защиты и лучшего фокусирования солнечной энергии конструкция защищена прозрачной стеклянной панелью.
Для повышения эффективной работы оборудования в нем можно использовать различные типы теплоносителя, которые не изменят своих свойств под воздействием отрицательных температур
Это важно для регионов с холодной зимой. Кроме этого необходимо тщательно проанализировать предложения на рынке и выбрать оптимальную конструкцию
В настоящее время производители предлагают несколько способов организации отопления частного дома солнечными коллекторами:
- Вакуумные коллектора. Оптимальный вариант для организации пассивной системы солнечного отопления. Характеризуются практически полным отсутствием тепловых потерь;
- Плоские коллектора. Экономный вариант солнечного отопления. Представляют собой систему труб, защищенных прозрачным материалом. Чаще всего используются для горячего водоснабжения в летний период. Применение для комбинированного солнечного отопления требует учета графика температур в зимний период и тщательный выбор теплоносителя.
Выбор во многом определяется предварительными расчетами – требуемой мощности и периодичностью работы теплоснабжения. В качестве эконом варианта можно рассматривать возможность самостоятельного изготовления плоских коллекторов для отопления солнечной энергией своими руками.
Вакуумные коллекторы для отопления
Конструкция вакуумного солнечного коллектора
Одной из проблем эксплуатации солнечных радиаторов для отопления дома являются большие тепловые потери. Они обусловлены особенностями эксплуатации – панель должна находиться вне отапливаемого помещения для поглощения солнечной энергии. Для решения этого вопроса был разработан вакуумный солнечный коллектор для системы отопления.
Конструкция вакуумных коллекторов состоит из внешнего корпуса и внутренней системы стеклянных труб. Для лучшей изоляции трубопроводы отделены от внешней среды вакуумной прослойкой с разряженным воздухом. Фактически вся установка представляет собой большой прозрачный термос.
Специфика вакуумного солнечного коллектора в системе отопления заключается в следующем:
- Использование в качестве теплоносителя специальной жидкости с низким порогом закипания. При этом происходит более эффективная передача тепловой энергии через теплообменник основному теплоносителю отопления – воде;
- Нанесение на внутреннюю поверхность специального покрытия, увеличивающего поглощательную способность тепловой солнечной энергии;
- Независимость работы от внешней температуры воздуха.
Для нормального функционирования системы потребуется обеспечить надежную теплоизоляцию теплообменника. Также следует утеплить трубопровод в местах прохождения через неотапливаемые помещения – чердак, кровельный пирог. Для расчета солнечного коллектора для отопления можно применять стандартные схемы. Но нужно учитывать, что его работа будет неэффективной при снижении температуры теплоносителя в контуре до +22°С.
Плоские солнечные коллекторы для отопления
Плоский солнечный коллектор
Для создания солнечной системы отопления частного дома с минимальными затратами чаще всего устанавливают плоские коллектора. Они отличаются от вакуумных упрощенной конструкцией. Однако при этом увеличиваются требования к их эксплуатации.
Плоский коллектор также имеет внутреннюю систему трубопроводов. Однако она изготавливается из медных или полимерных труб. Для защиты используется поликарбонат или каленое стекло. Внутренняя поверхность изолируется утеплителем – минеральной ватой или пенопластом. Под воздействием солнечных лучей происходит нагрев трубок и как следствие – повышение температуры теплоносителя.
Для плоского солнечного коллектора в системе отопления существуют жесткие эксплуатационные ограничения:
- В качестве теплоносителя можно использовать только антифриз. В противном случае произойдет замерзание воды и разрушение трубопровода;
- Для лучшей циркуляции при передаче тепла необходим монтаж насоса;
- При температуре ниже -10°С эффективность работы системы сильно падает.
Из-за последнего фактора не рекомендуется организация теплоснабжение дома солнечной энергией с помощью плоских коллекторов в регионах с низкими температурами в зимний период. Поэтому чаще всего делают плоский солнечный коллектор для отопления своими руками для горячего водоснабжения летом, весной или осенью.